机器学习历程——人工智能基础与应用导论(5)(决策树)

本文深入探讨了决策树这一有监督学习算法,包括其基本原理、适用范围、优点及构建过程。决策树通过特征选择、生成和剪枝步骤来实现分类和回归任务。在特征选择时,常用信息增益或信息增益比来评估特征的重要性。在构建过程中,通过递归地分割数据集以达到最佳分类效果,并通过剪枝提升泛化能力。关键词涉及决策树、特征选择、信息增益、分类和回归。
摘要由CSDN通过智能技术生成

一、介绍

1、决策树

decision tree,分类和预测的方法,有监督的学习算法,以树状图为基础,输出结果为简单实用规则。

2、适用范围

分类问题,回归问题。

3、优点

可读性强,分类速度块。

4、采用原则

损失函数最小化原则。

5、决策树原理

决策树是一个贪心算法,即在特性空间上执行递归的二元分割,决策树由节点有向边组成。

内部节点:一个特征或者属性。

叶子节点:一个分类。

使用决策树进行分类时,将实例分配到叶节点的类中,该叶节点所属的类就是该节点的分类。

决策树可以表示给定特征条件下,类别的条件概率分布。将特征空间划分为互不相交的单元S1、S2、……Sm。设某个单元Si内部有Ni个样本点,则它定义了一个条件概率分布:

 K为第k个分类。

1)每个单元对应于决策树的一条路径。

2)所有单元的条件概率分布构成了决策树所代表的条件概率分布。

3)在单元Si内部有Ni个样本点,但是整个单元都属于类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值