MatrixPainting

MatrixPainting
Problem Statement

There is a matrix with 9 rows and 9 columns. Each cell of the matrix is either black or white. With a single repaint operation, you can repaint all the cells in a single row or column black if the row or column already contains at least 5 black cells. Your goal is to make all the cells in the matrix black using a minimal number of repaint operations.

You will be given a String[] matrix, where the jth character of the ith element represents the cell at row i, column j. Black cells will be written as '1' (one), and white cells will be written as '0' (zero). Return the minimal number of repaint operations required to make all the cells black, or -1 if this is impossible.
 
Definition
       
Class:    MatrixPainting
Method:    countRepaints
Parameters:    String[]
Returns:    int
Method signature:    int countRepaints(String[] matrix)
(be sure your method is public)
   
 
Constraints
-    matrix will contain exactly 9 elements.
-    Each element of matrix will contain exactly 9 characters.
-    Each element of matrix will consist of '0' and '1' characters only.
 
Examples
0)   
{"001111111",
 "011111111",
 "011111111",
 "011111111",
 "011111111",
 "101111111",
 "101111111",
 "101111111",
 "101111111"}

Returns: 3

First, you should repaint the first row. After that, you can repaint the first and the second column.

总共有9行9列,共2 18种repaint的方法。现在的任务是判断每种repaint是否能够满足要求

int  valid( const  vector < int >&  way, vector < string >&  matrix)
    
{
        
int i,k,a,b;
        
int sum,all;
        all 
= 0;
        
for(a=0;a<9;a++)
        
{
            
for(b=0;b<9;b++)
            
{
                
if(matrix[a][b] == '1') all += 1;
            }

        }

        
bool find;
        
int mm = 0;
        
if(all == 81return 0;
        
while(true)
        
{
            find 
= false;
            mm 
++;
            
for(i=0;i<way.size();i++)
            
{
                k 
= way[i]%9;
                
if(way[i]>9)//column
                {
                    sum 
= 0;
                    
for(a = 0; a < 9; a++)
                    
{
                        
if(matrix[a][k] == '1') sum += 1;
                    }

                    
if(sum >= 5 && sum < 9)
                    
{
                        find 
= true;
                        
for(a = 0;a < 9; a++)
                        
{
                            
if(matrix[a][k] == '0')
                            
{
                                matrix[a][k] 
= '1';
                                all 
++;
                            }

                        }

                    }

                    
if(all == 81return mm;
                }

                
else
                
{
                    sum 
= 0;
                    
for(a = 0; a < 9; a++)
                    
{
                        
if(matrix[k][a] == '1') sum += 1;
                    }

                    
if(sum >= 5 && sum < 9)
                    
{
                        find 
= true;
                        
for(a = 0;a < 9; a++)
                        
{
                            
if(matrix[k][a] == '0')
                            
{
                                matrix[k][a] 
= '1';
                                all 
++;
                            }

                        }

                    }

                    
if(all == 81return mm;
                }

                
if(find)
                
{
                    
break;
                }

            }

            
//cout<<"i"<<i<<"  "<<mm<<" "<<all<<endl;
            if(!find) return -1;
        }

    }

还需要一个函数生成所有可能的repaint行和列

     int  allpaints(vector <  vector < int >   >   &  output)
    
{
        
int i,j,size;
        vector
<int> oneway;
        output.push_back(oneway);
        
        
for(i=1;i<=18;i++)
        
{
            vector
<int> way;
            size 
= output.size();
            
for(j=0;j<size;j++)
            
{
                way 
= output[j];
                output[j].push_back(i);
                output.push_back(way);
            }

        }

        
return 0;
    }

最终的函数实现如下:

     int  countRepaints(vector < string >  matrix)
    
{
        vector
<vector<int> > path;
        allpaints(path);
        
int i;
        
int size = 19;
        
int mm;
        
for(i=0;i<path.size();i++)
        
{
            
if(path[i].size() >= size) continue;
            vector
<string> M = matrix;
             mm 
= valid(path[i],M);
             
//cout<<"mm:"<<mm<<endl;
            if(mm >= 0)
            
{
                
if(size > mm) size = mm;
                
//cout<<size<<endl;
            }

        }

        
if(size == 19return -1;
        
return size;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值