自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(621)
  • 资源 (2)
  • 收藏
  • 关注

原创 研究生学位英语论文Introduction+综述部分英文

6] 冉进军,华丽,萧晨路,等. 基于问卷调查探讨高等院校大学生对人工智能的认知情况[J]. 高教学刊,2025,11(5):8-12,16. DOI:10.19980/j.CN23-1593/G4.2025.05.002.s。[5] 李艳,许洁,贾程媛,等. 大学生生成式人工智能应用现状与思考[J]. 开放教育研究,2024,30(1):89-98. DOI:10.13966/j.cnki.kfjyyj.2024.01.010.3. 计算机专业学生认为大模型会如何影响就业?

2025-07-31 08:15:00 632

原创 Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks论文分享

今日分享的论文是《Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks》原文链接:Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks-期刊-万方数据知识服务平台这是一篇关于利用pdf进行对抗攻击的综述。恶意软件在网络安全领域仍然构成重大威胁,这也归因于文档等感染载体的广泛使用。这些感染载体向受害者用户隐藏

2025-07-31 08:00:00 979

原创 StarCoder: may the source be with you!论文分享

今天分享的论文是《StarCoder: may the source be with you!》原文链接:[2305.06161] StarCoder: may the source be with you!一篇关于微调LLM的论文,为了学习微调LLM然后进行LLM漏洞挖掘所以看的文章。BigCode社区是一个致力于负责任开发代码大型语言模型(Code LLMs)的开放科学合作组织,该社区推出了StarCoder和StarCoderBase:这是两个具有155亿参数的模型,具备8K上下文长度、填充能力,并且

2025-07-30 08:15:00 784

原创 RoBERTa: A Robustly Optimized BERT Pretraining Approach论文分享

然而,较新的方法通过多任务微调(Dong等人,2019)、合并实体嵌入(Sun等人,2019)、片段预测(Joshi等人,2019)和多种自回归预训练变体(Song等人,2019;在前一节中,本文提出了对BERT预训练流程的改进,这些改进可提升下游任务的性能。例如,近期提出的XLNet架构(Yang等人,2019)在预训练时使用的数据量几乎是原始BERT(Devlin等人,2019)的10倍,其批量大小是BERT的8倍,而优化步数仅为BERT的一半,因此在预训练中处理的序列数量是BERT的4倍。

2025-07-30 08:00:00 570

原创 Recognizing Functions in Binaries with Neural Networks论文分享

本文使用先前工作中的数据集表明,循环神经网络能够以比最先进的基于机器学习的方法更高的准确性和效率识别二进制文件中的函数。然而,如果神经网络的参数可供有兴趣破坏模型准确性的对手使用,他们可能能够使用此类分析来更有效地添加与携带任务相关信息的特征向量不正交的额外指令,从而阻止其传输并显著影响RNN的性能。编译器还经常在函数之间插入填充(例如nop(0x90)和其他具有较长编码的无操作指令,或在Windows二进制文件中,触发中断的int3),模型会使用这些填充的结束来识别函数的开始。

2025-07-29 08:15:00 676

原创 PTLVD:Program Slicing and Transformer-based Line-level Vulnerability Detection System论文分享

今天分享的论文是《PTLVD:Program Slicing and Transformer-based Line-level Vulnerability Detection System》原文链接:PTLVD:Program Slicing and Transformer-based Line-level Vulnerability Detection System | IEEE Conference Publication | IEEE Xplore开源代码:https://github.com/che

2025-07-29 08:00:00 818

原创 NAVRepair: Node-Type Aware C/C++ Code Vulnerability Repair论文分享

在这些进展的基础上,代码漏洞修复领域(软件工程中的一项关键任务,使开发人员能够更深入地理解其代码并提高质量[11,28,42,46,49])也受益于神经网络的应用,以识别潜在的安全缺陷[5,27,43,47]。此外,本文的方法独立于任何特定的LLM,可以快速适应新的漏洞类型,这在漏洞类别和修复模板不断演变的实际场景中至关重要。为解决这些局限性,本文提出了一个新颖的框架,将代码的节点类型结构与错误类型相结合,为C/C++代码漏洞检测提供更精确的修复上下文和针对性的修复代码实例化。

2025-07-28 08:15:00 865

原创 DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection论文分享

今天分享的论文是《DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection》原文链接:[2304.00409] DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection开源数据集:https://github.com/wagner-grou

2025-07-28 08:00:00 1011

原创 Karonte: Detecting Insecure Multi-binary Interactions in Embedded Firmware论文分享

这使我们能 够发现潜在的易受攻击的数据流,发现了 46 个零日软件 错误,并重新发现了另外 5 个 n 日错误,证明了我们的 方法在不同设计的复杂固件上的有效性(即,单片嵌入式 操作系统和嵌入式 Linux 发行版)。在我 们对 KARONTE 的多二进制分析方法和以单二进制模式(即 禁用二进制数据流间跟踪)运行的相同分析进行的比较 中,每个样本产生的警报数量从平均 2 个增加到平均 722 个:KARONTE 提供了两个数量级的警报减少,从而降低了 误报率。这导致了 46 个零日错误的发现。

2025-07-27 08:15:00 680

原创 研究生学位英语大作业论文 文献综述部分

6] 冉进军,华丽,萧晨路,等. 基于问卷调查探讨高等院校大学生对人工智能的认知情况[J]. 高教学刊,2025,11(5):8-12,16. DOI:10.19980/j.CN23-1593/G4.2025.05.002.s。[5] 李艳,许洁,贾程媛,等. 大学生生成式人工智能应用现状与思考[J]. 开放教育研究,2024,30(1):89-98. DOI:10.13966/j.cnki.kfjyyj.2024.01.010.3. 计算机专业学生认为大模型会如何影响就业?

2025-07-27 08:00:00 237

原创 研究生学位英语大作业论文 引言部分 英语 APA格式版

References。

2025-07-26 08:15:00 401

原创 研究生学位英语大作业论文 引言部分 汉语

研究生作为高等教育中的高阶学术主体,其学业生活具有更强的专业性、研究导向性与创新性需求,尤其在网络安全、计算机科学与人工智能等前沿技术领域,大模型的应用既带来了效率提升与范式革新,也引发了关于学术伦理、技能异化与认知依赖的争议。然而,这种转变可能引发学术能力的“空心化”风险——过度依赖LLMs可能导致研究生忽视底层技术原理的深入探究,例如在恶意软件分析中仅关注模型生成的检测结果,而忽略对二进制代码逆向工程的实践训练[4]。这种认知与实践的割裂,凸显了研究生教育中技术素养与伦理教育的失衡。

2025-07-26 08:00:00 1097

原创 研究生学位英语论文Introduction部分英文

6] 冉进军,华丽,萧晨路,等. 基于问卷调查探讨高等院校大学生对人工智能的认知情况[J]. 高教学刊,2025,11(5):8-12,16. DOI:10.19980/j.CN23-1593/G4.2025.05.002.s。[5] 李艳,许洁,贾程媛,等. 大学生生成式人工智能应用现状与思考[J]. 开放教育研究,2024,30(1):89-98. DOI:10.13966/j.cnki.kfjyyj.2024.01.010.

2025-07-25 08:15:00 795

原创 研究生学位英语第一次课程汇报PPT+讲稿

在方法论与结果描述部分,建议采用"It was observed that..."或"Experimental data demonstrate..."等结构。例如某篇计算机视觉论文通过被动语态("Parameters were optimized via grid search")成功弱化研究者的主观干预,强化了算法本身的可靠性。某篇被拒稿的NLP论文原稿中存在多处"you can see...",修改为"The results indicate..."后显著提升了客观性。尊敬的各位同仁,下午好!

2025-07-25 08:00:00 514

原创 研究生算法期末大作业第四题

按影响力降序排序return# 剪枝1:剩余节点是否足够return# 剪枝2:计算剩余可能最大影响力的上界count = 0continuecount += 1breakreturncontinue# 选择当前节点# 回溯# 用户输入处理n = int(input("请输入节点数量:"))adj = {}nodes_order = [] # 记录节点输入顺序node = input(f"请输入节点{i + 1}的名称:")

2025-07-24 08:15:00 1143

原创 研究生算法期末大作业第三题第二问

该代码通过分治法和前缀和优化,试图高效解决最大密度子网格问题,但存在递归终止条件和跨边界处理的逻辑错误。修复后可正确应用于需要快速查找局部密集区域的场景。

2025-07-24 08:00:00 923

原创 Data Quality for Software Vulnerability Datasets论文分享

本文的研究旨在通过检查四个最先进的软件漏洞数据集的五个固有数据质量属性,以及这些问题对软件漏洞预测模型的后续影响来解决这些不足。尽管人们越来越意识到软件漏洞数据准备的挑战[10],但在系统地理解这些挑战如何可能影响数据质量,以及随后如何影响下游软件漏洞分析的可靠性方面,所做的努力相对较少。本文的研究旨在阐明软件漏洞数据质量的状态,以便本文更好地理解使用这些数据集报告的结果的可靠性和可信度。本文系统地检查了四个最先进的软件漏洞数据集的五个数据质量属性,以帮助提高依赖此信息的下游数据驱动任务的有效性和可信度。

2025-07-23 08:15:00 873

原创 A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries论文分享

先前的研究已经创建了几个现有的漏洞数据集。本文的Big-Vul数据集是从通用漏洞披露数据库和官方项目错误报告中收集而来的,这意味着就映射到CVE描述性信息的代码变更是否真的与漏洞相关而言,本文的数据集是准确的。3. 漏洞修复补丁的识别:对于开源项目,由于其代码仓库和提交日志是公开的,在漏洞修复与修复后的安全版本发布之间的时间间隔内,项目中的漏洞可能会受到安全攻击。与他们的数据集不同,Big-Vul是通过利用并关联CVE数据库、项目错误报告和代码提交构建的,这有助于提高识别与漏洞相关的代码变更提交的准确性。

2025-07-23 08:00:00 1987

原创 研究生算法期末大作业第三题第一问

这段代码用于在。

2025-07-22 08:15:00 990

原创 研究生算法期末大作业第二题

代码解决的是。

2025-07-22 08:00:00 1290

原创 研究生算法期末大作业第一题第二问

该代码实现了一个带设备数量限制的分数背包问题,结合分支限界法和贪心策略,在预算和设备数约束下最大化总算力,并通过交火损耗模型模拟实际场景。算法在保证精确解的同时,通过剪枝和优先级搜索优化了效率。

2025-07-21 08:15:00 1017

原创 研究生算法期末大作业第一题第一问

源代码:【免费】研究生算法期末大作业第一题第一问python版资源-CSDN下载import heapq# 定义节点类class Node: def __init__(self, level, value, weight, bound, selected): self.level = level # 当前处理的设备层级 self.value = value # 当前的算力 self.weight = weight # 当前的花费

2025-07-21 08:00:00 602

原创 GREYONE: Data Flow Sensitive Fuzzing论文分享

这个推论是合理的,即没有过度污染的问题。我们的污点分析 引擎 FTI 优于经典的污点分析解决方案 DFSan [2].平均而 言,它会发现 1.3 倍多的未受影响的分支(即,取决于 输入 字节),并在模糊化期间生成多 1 倍的唯一路 径。此外,GREYONE 在绕过复杂的程序约束方面表现出非 常好的性能,甚至优于最先进的符号执行辅助模糊器 QSYM [43].在现实世界的应用中,GREYONE 比 QSYM 发现 1.2 倍的唯一路径、1.12 倍的新边、2.15 倍的唯一崩溃和 1.52 倍的错误。

2025-07-20 08:15:00 805

原创 Investigating_Graph_Embedding_Methods_for_Cross-Platform_Binary_Code_Similarity_Detection论文分享

在他们的方法中,感受域内的节点被不同地对待,无论它们是传出、传入还是当前节点,因为它们被分配了不同的过滤器。首先,从每个 CFG,他们识别可能的执行路径,例如,通过使用CFG 上的随机行走。当考虑大函数搜索空间的更真实的设置时,GESS 提供的改进甚至更引人注目。在他们的工作中,谷歌的团队开发了一个 Apache 许可的 C++工具包,以在二进制可执行文件中找到(易受攻击的)第三方库函数的静态链接副本。然而,它只按对匹配图,即,将一对图作为输入,并返回相似性得分作为输出,这显著地降低了该方法的可扩展性。

2025-07-20 08:00:00 566

原创 Fixing Hardware Security Bugs with Large Language Models论文分享

证明安全漏洞的存在或不存在具有挑战性,这促使出现了更“创造性”的漏洞修复方法,包括基于AI的机器学习技术,如神经迁移学习[14]和基于示例的方法[31,53]。LLM有多个可调节参数影响输出结果,本文根据漏洞和指令调整提示,并在保持top_p、completions(n)和max_tokens为1、20和200的前提下,变化指令、温度和模型参数——其中`top_p`是核采样参数(仅考虑概率质量前top_p的结果),n是LLM每次请求生成的补全数量,max_tokens是每次补全的最大token数。

2025-07-19 08:00:00 1548

原创 Learning-based Models for Vulnerability Detection: An Extensive Study论文分享

在本文中,本文通过在最近构建的大规模数据集上进行实验,对两种最先进的基于学习的方法(基于序列的和基于图的)进行了广泛而全面的研究。为了全面比较现有工作的性能,在本文中,本文考虑了五种最先进的基于学习的软件漏洞检测方法,这些方法可以进一步分为两个更细的类别:基于图的和基于序列的。例如,它们是否能有效且可靠地检测现实世界或最危险的漏洞,模型擅长检测哪种类型的漏洞,这些模型学到了什么样的特征,模型在语义等效的函数上是否能稳定执行,使用DL模型的复杂性和成本是多少,是否会损害本文的隐私。

2025-07-19 08:00:00 903

原创 A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security论文分享

今天分享的论文是《A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security》原文链接:A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security | IEEE Journals & Magazine | IEEE Xplore这是一篇关于网络安全领

2025-07-18 08:15:00 935

原创 KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享PPT+讲稿

KARONTE作为一种自动化分析工具,能够帮助制造商和安全研究人员快速识别固件中的安全漏洞,从而在产品发布前进行修复,提升产品的整体安全性。各位同仁,今天我将为大家介绍一项关于嵌入式设备安全的重要研究——KARONTE,该研究发表于IEEE S&P 2020会议,由Nilo Redini等学者提出,旨在解决嵌入式固件中多二进制交互导致的不安全问题。KARONTE通过跟踪这些依赖关系,并使用有效的去污点策略,缓解了污染过度的问题,进一步提高了分析的准确性。这一策略有效缓解了路径爆炸问题,提高了分析效率。

2025-07-18 08:00:00 651

原创 CompileAgent: Automated Real-World Repo-Level Compilation with Tool-Integrated LLM-based Agent Syste

Multi-Agent Discussion:尽管存在各种用于解决推理任务的单代理方法,如自我完善(Xi等人,2023b)、自我反思(Yan等人,2024)、自我一致性(Wang等人,2024a)和选择推理(Creswell等人,2022),但本文认为这些复杂的推理方法对于解决编译错误是不必要的。在本文中,本文为讨论设置了三个代理,最多3轮。在本文中,提出了CompileAgent,这是首个专为仓库级编译设计的基于LLM的代理框架,它集成了五种工具和一种基于流程的代理策略,使LLM能够与软件工件交互。

2025-07-17 08:15:00 1170

原创 Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables论文分享

相反,本文发现,在文件末尾追加字节会降低基于梯度方法的有效性。这是合理的,因为文件长度各不相同,且随着离文件起始字节越来越远,找到可用于区分恶意软件和良性文件的信息性(非填充)字节的概率会降低。学习算法不能自动学习难 以操纵的、不变的信息,这些信息可靠地表征恶意软件, 如果不是主动设计的话,请记住这一点[4],要么提供适当的训练示例,要么对哪 些字节可能被恶意操作的先验知识进行编码。接下来,本文首先介绍所采用的实验设置,然后通过对比所提出的基于梯度的方法与简单随机字节添加的效率,对所得结果展开讨论。

2025-07-17 08:00:00 1686

原创 Examining Zero-Shot Vulnerability Repair with Large Language Models论文分享

尽管近期研究[12]表明,使用LLM(如GitHub Copilot)生成的代码补全可能引入安全弱点,但Pearce等人总结认为,模型仍能“提高软件开发人员的生产力”,尤其是在生成过程中配合“适当的安全感知工具以最小化风险”[12]。程序修复中的一个众所周知的问题是,项目的回归测试是程序正确性的薄弱代理。开箱即用的编码LLM,如OpenAI的Codex[7]和AI21的Jurassic1[8],在包含大量注释[9]–[11]和功能(既有漏洞代码也有非漏洞代码)的多语言开源代码上进行训练。

2025-07-16 08:15:00 946

原创 DetectVul: A statement-level code vulnerability detection for Python论文分享

与之前为C/C++量身定制的基于GNN的方法不同,这些方法需要多个工具来构建图,本文的方法仅依赖抽象语法树(AST)进行数据处理,这使得将本文的工作扩展到其他编程语言非常容易。值得注意的是,与之前的方法(如[8,14,17,23])不同,这些方法使用预训练的特征提取器,只训练基于GNN的分类器模型,在本文的研究中,本文将两者集成到一个模型中,并对模型进行端到端训练。为此,在提出的架构中,本文通过用灵活的类BERT架构替换GNN模型来消除对图的依赖,以学习代码片段或函数中语句之间的复杂关系。

2025-07-16 08:00:00 1167

原创 研究生算法选做作业凸包 python版

优势代码结构清晰,符合Pythonic风格正确处理共线点和退化情况支持交互式输入和随机测试适用场景计算几何基础算法教学小规模点集(n<10^4)的快速计算需要可视化验证的场景这段代码完整实现了凸包计算的核心逻辑,通过Python特有的语法特性简化了部分实现,但在排序策略和共线点处理上存在可优化空间。理解其与C++版本的差异有助于深入掌握Graham扫描算法的本质。

2025-07-15 08:15:00 880

原创 研究生算法选做作业凸包 C++版

int x, y;Point base;// 比较函数if (c!// 找到基点i < n;++i) {// 排序其他点// 过滤共线点i < n;++i) {i++;// 构建凸包i < n;cin >> n;i < n;

2025-07-15 08:00:00 766

原创 【算法设计与分析】基于Graham扫描法的二维平面点集凸包计算:研究生算法选做作业 latex+pdf

在我的代码实现问题情景下,n是用户指定输入的,接着用户可以输入相应的n个点的坐标,如果n输入-1,那么就随机生成n以及n个点的坐标,同时输出告诉用户相应的n值和n个坐标的值。Python 版本的输入输出(随机输入)如图~\ref{fig:python} 所示。\title{\heiti《算法分析与设计》选做作业} % ctex已集成黑体。C++ 版本的输入输出(用户指定输入)如图~\ref{fig:cpp} 所示。\caption{Python 实现}\caption{C++ 实现}

2025-07-14 08:15:00 1308

原创 【算法设计与分析】基于动态规划的算术表达式优化及序列划分问题求解:研究生第三次算法作业 latex+pdf

\max_{\substack{l \leq m < r \\ 0 \leq t < k}} \mathcal{DP}[l][m][t] \times \mathcal{DP}[m+1][r][k-t-1] & \text{(乘法分割)} \\。&\max_{\substack{l \leq m < r \\ 0 \leq t \leq k}} \mathcal{DP}[l][m][t] + \mathcal{DP}[m+1][r][k-t] & \text{(加法分割)}

2025-07-14 08:00:00 656

原创 【算法分析与设计】研究生第二次算法作业:基于分治策略的有序数组中位数查找与逆序对计数 latex源码和pdf

给定实数序列$A=\{a_1,a_2,...,a_N\}$,若存在下标$i<j$且$a_i>a_j$,则称有序对$(a_i, a_j)$为一个逆序对。\text{Median} = \frac{\text{第}n\text{小元素} + \text{第}(n+1)\text{小元素}}{2}逆序对在序列中体现为满足$i<j$且$a_i>a_j$的有序对$(a_i,a_j)$。由主定理可得时间复杂度为$O(\log k)$。\item 当$X[i-1] < Y[j-1]$时,排除$X$前$i$个元素。

2025-07-13 08:15:00 964

原创 【算法分析与设计】研究生第一次算法作业latex源码+pdf

设 \( F(N) = O(c f(N)) \),即存在正常数 \( C_1 \) 和 \( N_1 \),对任意 \( N \geq N_1 \),有。已知 \( g(N) = O(f(N)) \),即存在正常数 \( C_1 \) 和 \( N_1 \),对任意 \( N \geq N_1 \),有。设 \( G(N) = O(g) \),则存在正常数 \( C_2 \) 和 \( N_2 \),对任意 \( N \geq N_2 \),有。因此,\( O(c f(N)) = O(f(N)) \)。

2025-07-13 08:00:00 1540

原创 研究生算法第二次作业第二题 python版

这段Python代码实现了与之前C++代码相同的核心功能——使用归并排序算法高效计算数组中的逆序对数量。arr = list(map(int, input("请输入数组元素,空格分隔:").split()))这段代码通过归并排序的合并过程自然统计逆序对,既保持了算法的高效性,又准确解决了问题,是分治算法思想的典型实现。print("随机生成的数组:", arr)n = int(input("请输入n的值:"))print("输入长度不匹配!print("逆序对数目:", total)

2025-07-12 08:15:00 978

原创 研究生算法第二次作业第2题 C++版

该代码通过归并排序的合并过程自然地统计逆序对,既保持了算法的高效性,又准确解决了问题,是分治算法的典型应用案例。cout << "逆序对数目:" << countInversions(temp) << endl;这段C++代码实现了使用归并排序算法高效计算数组中逆序对数量的功能。cout << "请输入数组元素(空格分隔):";cout << "随机生成的数组:";cout << "请输入n的值:";

2025-07-12 08:00:00 748

动态漏洞挖掘顶会论文分享PPT

动态漏洞挖掘顶会论文分享PPT

2025-06-15

基于人工智能技术的行业研报

内容概要:本文档为东南大学金融投资协会举办的行业研报大赛报告,聚焦人工智能行业。报告详细阐述了人工智能的政策支持、人才需求、5G技术推动、AI芯片发展及深度学习的应用。自2017年起,人工智能连续被纳入政府工作报告,强调政策持续优化促进行业发展。随着技术进步,AI人才需求大幅增长,特别是高技术服务和制造业领域。5G商用加速了AI技术的应用,AI芯片在2020年实现了大规模落地,深度学习成为推动各行业创新的核心技术。此外,报告还探讨了chatgpt大模型结合、人工智能教育、无人驾驶及AI在金融场景的应用,提出关注这些领域的投资机会,并提醒注意政策变化和AI伦理法规的风险。 适合人群:对人工智能行业感兴趣的投资者、创业者、科研人员及相关政策制定者。 使用场景及目标:①帮助投资者理解人工智能行业的政策背景和发展趋势;②为企业提供技术应用和市场前景的参考;③为科研人员提供最新的技术发展方向和研究热点;④为政策制定者提供行业发展现状和未来趋势的依据。 其他说明:报告中提到的人工智能发展不仅依赖于技术创新,还需要关注政策导向和社会伦理问题。尤其在chatgpt大模型、无人驾驶等新兴领域,技术进步的同时也要重视数据隐私和安全问题。此外,人工智能教育的应用将有助于培养更多复合型人才,满足行业发展的需求。

2025-06-15

大学生网络安全宣讲课程PPT

大学生网络安全宣讲课程PPT

2025-06-13

计算机网络体系结构课程大作业论文

内容概要:本文深入探讨了计算机网络体系结构技术的核心原理与未来发展趋势,通过综合课程学习和广泛文献阅读,系统分析了该领域的技术架构、关键组件及其现实应用中的价值。文章指出,网络体系结构不仅涉及协议,还涵盖网络拓扑、系统信息处理方式、用户与终端的信息交换方式等多个方面。网络体系结构的确定对网络的性能与发展至关重要,它指导网络的发展方向,协调网络各部分有序发展,并确保设计准则不断接受检验和完善。文章还介绍了TCP/IP体系结构的局限性,如安全保障能力弱、可扩展能力不足、移动性支持差等,并探讨了未来网络体系结构可能的发展方向,如增强网络可信性、提高网络可控性等。此外,文章通过分析一篇高质量学术论文《Aequitas: Admission Control for Performance-Critical RPCs in Datacenters》,展示了如何通过加权公平排队(WFQ)机制在数据中心中实现高效的流量控制,确保高优先级流量的延迟服务等级目标(SLO)。; 适合人群:具备一定计算机网络基础知识的本科生、研究生及从事网络技术研究和开发的专业人士。; 使用场景及目标:①理解网络体系结构的定义及其在不同发展阶段的研究角度;②掌握TCP/IP体系结构的局限性及未来改进方向;③学习如何通过WFQ机制在数据中心中实现高效的流量控制,确保高优先级流量的延迟SLO;④探讨网络体系结构在低轨卫星互联网、无人机集群网络、蜂窝车联网、工业互联网等新型网络中的应用。; 其他说明:本文强调了计算机网络体系结构技术对人类社会信息化进程的重要支撑作用,并呼吁学术界与产业界加强合作,共同推动计算机网络体系结构技术的持续进步与发展,为构建网络空间命运共同体贡献力量。文章还展望了未来网络体系结构可能的发展方向,如高性能计算、量子计算、云计算与边缘计算的融合、网络智能化和自动化、以及基于SDN和NFV技术的网络架构等。

2025-06-13

KARONTE论文分享PPT

KARONTE论文分享PPT

2025-06-12

大学生学业科研奖学金答辩PPT

大学生学业科研奖学金答辩PPT

2025-06-09

本科生智能奖学金申请答辩PPT

本科生智能奖学金申请答辩PPT

2025-06-08

大学生春季奖学金答辩PPT

大学生春季奖学金答辩PPT

2025-06-08

清华网研院保研面试PPT

清华网研院保研面试PPT

2025-05-28

省三好学生答辩PPT+讲稿

省三好学生答辩PPT+讲稿

2025-06-03

国家奖学金答辩PPT+文稿

国家奖学金答辩PPT+文稿

2025-06-02

跨平台物联网漏洞挖掘算法评估框架设计与实现 项目结项答辩PPT+讲稿

跨平台物联网漏洞挖掘算法评估框架设计与实现 项目结项答辩PPT+讲稿

2025-05-31

大学生支教创作课程PPT

大学生支教创作课程PPT

2025-05-31

《GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing》论文分享、阅读、详解PPT+讲稿

《GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing》论文分享、阅读、详解PPT+讲稿

2025-05-27

国内人工智能行业研究PPT

国内人工智能行业研究PPT

2025-05-17

学位英语期末课程汇报 keynote部分

学位英语期末课程汇报 keynote部分

2025-04-15

儿童节烟花代码2python实现

代码实现了一个简单的控制台烟花动画效果,用于庆祝儿童节。这里使用了ANSI转义序列来改变文本颜色,以及随机选择字符和位置来模拟烟花的爆炸效果: 清屏方式:在Windows的cmd或PowerShell中,\n * console_height可能不足以清屏。可以使用os.system('cls')(Windows)或os.system('clear')(Unix/Linux/macOS)来清屏,但请注意,这会在执行时闪烁屏幕。另一种方法是使用更复杂的库,如curses(Unix-like)或colorama(跨平台)。 性能问题:每次打印都会刷新整个屏幕,这可能会导致动画看起来卡顿。使用curses库可以避免这个问题,因为它允许在屏幕上直接绘制和更新字符,而不是每次都重新打印整个屏幕。 颜色重置:已经正确地使用了颜色重置序列\033[0m,这是很好的实践。 代码结构:代码结构清晰,函数划分合理。 用户交互:使用input()函数等待用户按键后退出是一个简单的用户交互方式。 下面是一个使用colorama库(需要事先安装:pip inst

2025-01-15

儿童节烟花代码python实现

代码已经很好地实现了在控制台上打印出“儿童节快乐!”的祝福语,并跟随五个烟花表情符号的功能。不过,为了确保烟花表情符号\U0001F386在不同的终端或编辑器中都能正确显示: 确保终端支持Unicode:大多数现代终端和编辑器(如VSCode、PyCharm、Jupyter Notebook等)都支持Unicode字符,但一些老旧的或特定配置的终端可能不支持。 调整输出格式:您的代码已经通过在烟花后面加一个空格来避免表情符号过于紧凑,这是很好的实践。如果希望进一步美化输出,可以考虑添加换行符\n或调整烟花之间的空格数量。 增强可读性和趣味性:除了简单的打印,还可以考虑添加一些动画效果或更多的装饰性文字,使输出更加生动有趣。 下面是一个稍微修改后的版本,其中增加了换行符,使得每个烟花表情符号都单独占一行,同时保持了原有的祝福信息: python print("儿童节快乐!") # 使用Unicode烟花表情符号 firework_emoji = "\U0001F386" # 烟花 for _ in range(5): # 重复输出5次

2025-01-15

分布式Server:Server

这段代码是一个使用DDS(Data Distribution Service,数据分发服务)API的订阅者应用示例。DDS是一种中间件协议,用于在分布式系统中发布和订阅数据。该代码示例展示了如何创建一个订阅者,接收Grade类型的数据,计算三个成绩的平均值,并将结果以AverageGrade类型的数据发布出去。以下是对代码主要部分的解析和一些潜在问题的指出: 主要部分解析 创建参与者(Participant): 使用DomainParticipantFactory创建一个参与者,该参与者在指定的域ID中运行。 创建订阅者(Subscriber)和发布者(Publisher): 在参与者下分别创建订阅者和发布者。 注册数据类型: 注册Grade和AverageGrade数据类型,这是DDS通信的基础。 创建主题(Topic): 为Grade和AverageGrade数据类型分别创建主题。 创建数据读取器(DataReader)和数据写入器(DataWriter): 在订阅者下创建Grade数据读取器,在发布者下创建AverageGrade数据写入器。 数据接收与处理: 在UserDat

2025-01-11

分布式Server:IDL-ssgrade

这段代码定义了两个类,Grade 和 AverageGrade,它们分别用于表示单个学生的成绩和三个学生成绩的平均值。这两个类都支持拷贝构造函数、赋值操作符重载、以及序列化和反序列化操作。这里使用的是一种类似于CORBA(Common Object Request Broker Architecture,公共对象请求代理体系结构)中的CDR(Common Data Representation,通用数据表示)机制来进行数据的序列化和反序列化。 Grade 类 拷贝构造函数:接收一个Grade对象作为参数,将它的name(姓名)、ID(学号)和score(成绩)复制到新对象中。 赋值操作符重载:检查自赋值情况,然后将右侧对象的name、ID和score复制到左侧对象中。 Marshal 方法:用于序列化Grade对象的数据到CDR流中。它将name和ID作为字符串,score作为浮点数写入CDR流。 UnMarshal 方法:用于从CDR流中反序列化Grade对象的数据。它从CDR流中读取字符串作为name和ID,读取浮点数作为score。注意,这里在赋值前会检查name和ID是否已分

2025-01-11

研究生学位英语第二次课程汇报Introducion部分PPT

研究生学位英语第二次课程汇报Introducion部分PPT

2025-07-29

研究生学位英语第一次课程汇报PPT

研究生学位英语第一次课程汇报PPT

2025-07-19

研究生算法期末大作业第四题源代码

研究生算法期末大作业第四题源代码

2025-07-18

研究生算法期末大作业第三题第二问源代码

研究生算法期末大作业第三题第二问源代码

2025-07-18

研究生算法期末大作业第三题第一问源代码

研究生算法期末大作业第三题第一问源代码

2025-07-16

研究生算法期末大作业第二题源代码

研究生算法期末大作业第二题源代码

2025-07-16

研究生算法期末大作业第一题第二问python

研究生算法期末大作业第一题第二问python

2025-07-15

研究生算法期末大作业第一题第一问python版

研究生算法期末大作业第一题第一问python版

2025-07-15

KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享

KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享

2025-07-12

研究生算法选做作业凸包 python版

研究生算法选做作业凸包 python版

2025-07-09

研究生算法选做作业凸包 C++版

研究生算法选做作业凸包 C++版

2025-07-09

【算法设计与分析】基于Graham扫描法的二维平面点集凸包计算:研究生算法选做作业

内容概要:本文档是关于《算法分析与设计》课程中凸包问题的选做作业,详细介绍了使用Graham-scan算法思想实现凸包计算的方法。文档提供了C++和Python两种语言的具体代码实现,包括点的输入、基点查找、极角排序、共线点过滤以及最终构建凸包的过程。对于用户指定数量的点或随机生成点的情况都进行了考虑,确保程序能够适应不同场景下的需求。; 适合人群:计算机科学相关专业的研究生,以及对几何算法感兴趣的开发者。; 使用场景及目标:①理解并掌握Graham-scan算法的工作原理;②学习如何用C++和Python实现凸包算法;③通过实际编码练习加深对算法细节的理解;④提高解决几何问题的能力。; 阅读建议:建议读者先了解基本的几何概念和Graham-scan算法原理,再逐步阅读代码部分。对于每段代码,应结合注释理解其功能,同时可以尝试运行代码以增强实践能力。此外,还可以对比两种语言实现方式的异同,进一步提升编程技巧。

2025-07-04

研究生算法第三次作业第二题

研究生算法第三次作业第二题

2025-07-07

研究生算法第三次作业第一题 python版

研究生算法第三次作业第一题 python版

2025-07-07

研究生算法第二次作业第二题 python版

研究生算法第二次作业第二题 python版

2025-07-06

研究生算法第二次作业第2题 C++版

研究生算法第二次作业第2题 C++版

2025-07-06

【算法设计与分析】基于动态规划的算术表达式优化及序列划分问题求解:研究生第三次算法作业

内容概要:本文档是关于《算法分析与设计》课程的第三次作业,主要探讨两个算法问题。第一个问题是通过在给定的数字序列中插入乘法和加法运算符,以最大化最终表达式的值。该问题展示了动态规划的应用,包括状态空间定义、状态转移方程以及预处理优化。第二个问题是将整数序列划分成若干连续子段,每个子段的和不超过给定阈值,目标是最小化各子段最大值之和。该问题同样采用了动态规划的方法进行求解,并通过实例验证了算法的有效性。; 适合人群:计算机科学专业的研究生或具有相关背景的学生及研究人员。; 使用场景及目标:①理解动态规划在解决复杂组合优化问题中的应用;②掌握如何通过预处理和状态转移来提高算法效率;③学习如何利用数学归纳法证明算法的正确性。; 其他说明:此文档不仅提供了详细的算法设计思路,还包含具体的伪代码实现和复杂度分析,有助于深入理解动态规划的核心思想及其实际应用。建议读者结合理论学习与编程实践,以加深对动态规划的理解。

2025-07-04

【算法分析与设计】研究生第一次算法作业:大O符号性质的数学证明及应用

内容概要:本文档是《算法分析与设计》课程的第一次作业,主要内容为证明五个关于大O符号(渐近复杂度)的关系式。具体包括:1) O(f) + O(g) = O(f + g);2) O(f) · O(g) = O(f · g);3) 如果 g(N) = O(f(N)),则 O(f) + O(g) = O(f);4) O(cf(N)) = O(f(N));5) f = O(f)。每个关系式的证明都基于大O符号的定义,通过设定适当的常数和条件,逐步推导出结论。; 适合人群:计算机科学相关专业研究生或高年级本科生,尤其是正在学习算法分析与设计课程的学生。; 使用场景及目标:①帮助学生理解并掌握大O符号的性质及其证明方法;②提高学生的数学推理能力和算法分析能力;③为后续更复杂的算法设计与分析打下坚实的理论基础。; 其他说明:建议在阅读过程中结合具体的例子进行思考,以便更好地理解证明过程。同时,可以参考教材或其他资料加深对大O符号的理解。

2025-07-03

【算法分析与设计】基于分治策略的有序数组中位数查找与逆序对计数:高效算法设计及复杂度分析文档的主要内容

内容概要:本文档是《算法分析与设计》课程的第二次作业,主要包含两个题目。第一个题目是寻找两个有序数组的中位数,要求设计时间复杂度为O(log n)的分治算法,通过递归排除无关元素,最终找到合并后的中位数,并提供了C++和Python的代码实现。第二个题目是基于分治策略的逆序对计数算法,通过将数组分解为左右两部分,递归计算每部分的逆序对,并在合并过程中统计跨部分的逆序对,同样给出了C++和Python的实现代码,并详细分析了时间复杂度为Θ(n log n)。 适合人群:计算机相关专业的研究生或对算法设计与分析有一定基础的学习者。 使用场景及目标:①深入理解分治算法的应用,掌握如何通过分治法优化算法的时间复杂度;②学习并实践C++和Python两种语言的编程技巧,提高编程能力;③为后续更复杂的算法学习打下坚实的基础。 其他说明:文档不仅提供了详细的算法设计思路和伪代码,还附带了完整的代码实现,便于读者理解和实践。建议读者在学习过程中多加思考算法的设计思想,并动手实现代码,以加深对分治算法的理解。

2025-07-03

流水作业调度问题的算法设计与分析PPT

流水作业调度问题的算法设计与分析PPT

2025-06-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除