- 博客(621)
- 资源 (2)
- 收藏
- 关注
原创 研究生学位英语论文Introduction+综述部分英文
6] 冉进军,华丽,萧晨路,等. 基于问卷调查探讨高等院校大学生对人工智能的认知情况[J]. 高教学刊,2025,11(5):8-12,16. DOI:10.19980/j.CN23-1593/G4.2025.05.002.s。[5] 李艳,许洁,贾程媛,等. 大学生生成式人工智能应用现状与思考[J]. 开放教育研究,2024,30(1):89-98. DOI:10.13966/j.cnki.kfjyyj.2024.01.010.3. 计算机专业学生认为大模型会如何影响就业?
2025-07-31 08:15:00
632
原创 Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks论文分享
今日分享的论文是《Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks》原文链接:Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks-期刊-万方数据知识服务平台这是一篇关于利用pdf进行对抗攻击的综述。恶意软件在网络安全领域仍然构成重大威胁,这也归因于文档等感染载体的广泛使用。这些感染载体向受害者用户隐藏
2025-07-31 08:00:00
979
原创 StarCoder: may the source be with you!论文分享
今天分享的论文是《StarCoder: may the source be with you!》原文链接:[2305.06161] StarCoder: may the source be with you!一篇关于微调LLM的论文,为了学习微调LLM然后进行LLM漏洞挖掘所以看的文章。BigCode社区是一个致力于负责任开发代码大型语言模型(Code LLMs)的开放科学合作组织,该社区推出了StarCoder和StarCoderBase:这是两个具有155亿参数的模型,具备8K上下文长度、填充能力,并且
2025-07-30 08:15:00
784
原创 RoBERTa: A Robustly Optimized BERT Pretraining Approach论文分享
然而,较新的方法通过多任务微调(Dong等人,2019)、合并实体嵌入(Sun等人,2019)、片段预测(Joshi等人,2019)和多种自回归预训练变体(Song等人,2019;在前一节中,本文提出了对BERT预训练流程的改进,这些改进可提升下游任务的性能。例如,近期提出的XLNet架构(Yang等人,2019)在预训练时使用的数据量几乎是原始BERT(Devlin等人,2019)的10倍,其批量大小是BERT的8倍,而优化步数仅为BERT的一半,因此在预训练中处理的序列数量是BERT的4倍。
2025-07-30 08:00:00
570
原创 Recognizing Functions in Binaries with Neural Networks论文分享
本文使用先前工作中的数据集表明,循环神经网络能够以比最先进的基于机器学习的方法更高的准确性和效率识别二进制文件中的函数。然而,如果神经网络的参数可供有兴趣破坏模型准确性的对手使用,他们可能能够使用此类分析来更有效地添加与携带任务相关信息的特征向量不正交的额外指令,从而阻止其传输并显著影响RNN的性能。编译器还经常在函数之间插入填充(例如nop(0x90)和其他具有较长编码的无操作指令,或在Windows二进制文件中,触发中断的int3),模型会使用这些填充的结束来识别函数的开始。
2025-07-29 08:15:00
676
原创 PTLVD:Program Slicing and Transformer-based Line-level Vulnerability Detection System论文分享
今天分享的论文是《PTLVD:Program Slicing and Transformer-based Line-level Vulnerability Detection System》原文链接:PTLVD:Program Slicing and Transformer-based Line-level Vulnerability Detection System | IEEE Conference Publication | IEEE Xplore开源代码:https://github.com/che
2025-07-29 08:00:00
818
原创 NAVRepair: Node-Type Aware C/C++ Code Vulnerability Repair论文分享
在这些进展的基础上,代码漏洞修复领域(软件工程中的一项关键任务,使开发人员能够更深入地理解其代码并提高质量[11,28,42,46,49])也受益于神经网络的应用,以识别潜在的安全缺陷[5,27,43,47]。此外,本文的方法独立于任何特定的LLM,可以快速适应新的漏洞类型,这在漏洞类别和修复模板不断演变的实际场景中至关重要。为解决这些局限性,本文提出了一个新颖的框架,将代码的节点类型结构与错误类型相结合,为C/C++代码漏洞检测提供更精确的修复上下文和针对性的修复代码实例化。
2025-07-28 08:15:00
865
原创 DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection论文分享
今天分享的论文是《DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection》原文链接:[2304.00409] DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection开源数据集:https://github.com/wagner-grou
2025-07-28 08:00:00
1011
原创 Karonte: Detecting Insecure Multi-binary Interactions in Embedded Firmware论文分享
这使我们能 够发现潜在的易受攻击的数据流,发现了 46 个零日软件 错误,并重新发现了另外 5 个 n 日错误,证明了我们的 方法在不同设计的复杂固件上的有效性(即,单片嵌入式 操作系统和嵌入式 Linux 发行版)。在我 们对 KARONTE 的多二进制分析方法和以单二进制模式(即 禁用二进制数据流间跟踪)运行的相同分析进行的比较 中,每个样本产生的警报数量从平均 2 个增加到平均 722 个:KARONTE 提供了两个数量级的警报减少,从而降低了 误报率。这导致了 46 个零日错误的发现。
2025-07-27 08:15:00
680
原创 研究生学位英语大作业论文 文献综述部分
6] 冉进军,华丽,萧晨路,等. 基于问卷调查探讨高等院校大学生对人工智能的认知情况[J]. 高教学刊,2025,11(5):8-12,16. DOI:10.19980/j.CN23-1593/G4.2025.05.002.s。[5] 李艳,许洁,贾程媛,等. 大学生生成式人工智能应用现状与思考[J]. 开放教育研究,2024,30(1):89-98. DOI:10.13966/j.cnki.kfjyyj.2024.01.010.3. 计算机专业学生认为大模型会如何影响就业?
2025-07-27 08:00:00
237
原创 研究生学位英语大作业论文 引言部分 汉语
研究生作为高等教育中的高阶学术主体,其学业生活具有更强的专业性、研究导向性与创新性需求,尤其在网络安全、计算机科学与人工智能等前沿技术领域,大模型的应用既带来了效率提升与范式革新,也引发了关于学术伦理、技能异化与认知依赖的争议。然而,这种转变可能引发学术能力的“空心化”风险——过度依赖LLMs可能导致研究生忽视底层技术原理的深入探究,例如在恶意软件分析中仅关注模型生成的检测结果,而忽略对二进制代码逆向工程的实践训练[4]。这种认知与实践的割裂,凸显了研究生教育中技术素养与伦理教育的失衡。
2025-07-26 08:00:00
1097
原创 研究生学位英语论文Introduction部分英文
6] 冉进军,华丽,萧晨路,等. 基于问卷调查探讨高等院校大学生对人工智能的认知情况[J]. 高教学刊,2025,11(5):8-12,16. DOI:10.19980/j.CN23-1593/G4.2025.05.002.s。[5] 李艳,许洁,贾程媛,等. 大学生生成式人工智能应用现状与思考[J]. 开放教育研究,2024,30(1):89-98. DOI:10.13966/j.cnki.kfjyyj.2024.01.010.
2025-07-25 08:15:00
795
原创 研究生学位英语第一次课程汇报PPT+讲稿
在方法论与结果描述部分,建议采用"It was observed that..."或"Experimental data demonstrate..."等结构。例如某篇计算机视觉论文通过被动语态("Parameters were optimized via grid search")成功弱化研究者的主观干预,强化了算法本身的可靠性。某篇被拒稿的NLP论文原稿中存在多处"you can see...",修改为"The results indicate..."后显著提升了客观性。尊敬的各位同仁,下午好!
2025-07-25 08:00:00
514
原创 研究生算法期末大作业第四题
按影响力降序排序return# 剪枝1:剩余节点是否足够return# 剪枝2:计算剩余可能最大影响力的上界count = 0continuecount += 1breakreturncontinue# 选择当前节点# 回溯# 用户输入处理n = int(input("请输入节点数量:"))adj = {}nodes_order = [] # 记录节点输入顺序node = input(f"请输入节点{i + 1}的名称:")
2025-07-24 08:15:00
1143
原创 研究生算法期末大作业第三题第二问
该代码通过分治法和前缀和优化,试图高效解决最大密度子网格问题,但存在递归终止条件和跨边界处理的逻辑错误。修复后可正确应用于需要快速查找局部密集区域的场景。
2025-07-24 08:00:00
923
原创 Data Quality for Software Vulnerability Datasets论文分享
本文的研究旨在通过检查四个最先进的软件漏洞数据集的五个固有数据质量属性,以及这些问题对软件漏洞预测模型的后续影响来解决这些不足。尽管人们越来越意识到软件漏洞数据准备的挑战[10],但在系统地理解这些挑战如何可能影响数据质量,以及随后如何影响下游软件漏洞分析的可靠性方面,所做的努力相对较少。本文的研究旨在阐明软件漏洞数据质量的状态,以便本文更好地理解使用这些数据集报告的结果的可靠性和可信度。本文系统地检查了四个最先进的软件漏洞数据集的五个数据质量属性,以帮助提高依赖此信息的下游数据驱动任务的有效性和可信度。
2025-07-23 08:15:00
873
原创 A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries论文分享
先前的研究已经创建了几个现有的漏洞数据集。本文的Big-Vul数据集是从通用漏洞披露数据库和官方项目错误报告中收集而来的,这意味着就映射到CVE描述性信息的代码变更是否真的与漏洞相关而言,本文的数据集是准确的。3. 漏洞修复补丁的识别:对于开源项目,由于其代码仓库和提交日志是公开的,在漏洞修复与修复后的安全版本发布之间的时间间隔内,项目中的漏洞可能会受到安全攻击。与他们的数据集不同,Big-Vul是通过利用并关联CVE数据库、项目错误报告和代码提交构建的,这有助于提高识别与漏洞相关的代码变更提交的准确性。
2025-07-23 08:00:00
1987
原创 研究生算法期末大作业第一题第二问
该代码实现了一个带设备数量限制的分数背包问题,结合分支限界法和贪心策略,在预算和设备数约束下最大化总算力,并通过交火损耗模型模拟实际场景。算法在保证精确解的同时,通过剪枝和优先级搜索优化了效率。
2025-07-21 08:15:00
1017
原创 研究生算法期末大作业第一题第一问
源代码:【免费】研究生算法期末大作业第一题第一问python版资源-CSDN下载import heapq# 定义节点类class Node: def __init__(self, level, value, weight, bound, selected): self.level = level # 当前处理的设备层级 self.value = value # 当前的算力 self.weight = weight # 当前的花费
2025-07-21 08:00:00
602
原创 GREYONE: Data Flow Sensitive Fuzzing论文分享
这个推论是合理的,即没有过度污染的问题。我们的污点分析 引擎 FTI 优于经典的污点分析解决方案 DFSan [2].平均而 言,它会发现 1.3 倍多的未受影响的分支(即,取决于 输入 字节),并在模糊化期间生成多 1 倍的唯一路 径。此外,GREYONE 在绕过复杂的程序约束方面表现出非 常好的性能,甚至优于最先进的符号执行辅助模糊器 QSYM [43].在现实世界的应用中,GREYONE 比 QSYM 发现 1.2 倍的唯一路径、1.12 倍的新边、2.15 倍的唯一崩溃和 1.52 倍的错误。
2025-07-20 08:15:00
805
原创 Investigating_Graph_Embedding_Methods_for_Cross-Platform_Binary_Code_Similarity_Detection论文分享
在他们的方法中,感受域内的节点被不同地对待,无论它们是传出、传入还是当前节点,因为它们被分配了不同的过滤器。首先,从每个 CFG,他们识别可能的执行路径,例如,通过使用CFG 上的随机行走。当考虑大函数搜索空间的更真实的设置时,GESS 提供的改进甚至更引人注目。在他们的工作中,谷歌的团队开发了一个 Apache 许可的 C++工具包,以在二进制可执行文件中找到(易受攻击的)第三方库函数的静态链接副本。然而,它只按对匹配图,即,将一对图作为输入,并返回相似性得分作为输出,这显著地降低了该方法的可扩展性。
2025-07-20 08:00:00
566
原创 Fixing Hardware Security Bugs with Large Language Models论文分享
证明安全漏洞的存在或不存在具有挑战性,这促使出现了更“创造性”的漏洞修复方法,包括基于AI的机器学习技术,如神经迁移学习[14]和基于示例的方法[31,53]。LLM有多个可调节参数影响输出结果,本文根据漏洞和指令调整提示,并在保持top_p、completions(n)和max_tokens为1、20和200的前提下,变化指令、温度和模型参数——其中`top_p`是核采样参数(仅考虑概率质量前top_p的结果),n是LLM每次请求生成的补全数量,max_tokens是每次补全的最大token数。
2025-07-19 08:00:00
1548
原创 Learning-based Models for Vulnerability Detection: An Extensive Study论文分享
在本文中,本文通过在最近构建的大规模数据集上进行实验,对两种最先进的基于学习的方法(基于序列的和基于图的)进行了广泛而全面的研究。为了全面比较现有工作的性能,在本文中,本文考虑了五种最先进的基于学习的软件漏洞检测方法,这些方法可以进一步分为两个更细的类别:基于图的和基于序列的。例如,它们是否能有效且可靠地检测现实世界或最危险的漏洞,模型擅长检测哪种类型的漏洞,这些模型学到了什么样的特征,模型在语义等效的函数上是否能稳定执行,使用DL模型的复杂性和成本是多少,是否会损害本文的隐私。
2025-07-19 08:00:00
903
原创 A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security论文分享
今天分享的论文是《A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security》原文链接:A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security | IEEE Journals & Magazine | IEEE Xplore这是一篇关于网络安全领
2025-07-18 08:15:00
935
原创 KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享PPT+讲稿
KARONTE作为一种自动化分析工具,能够帮助制造商和安全研究人员快速识别固件中的安全漏洞,从而在产品发布前进行修复,提升产品的整体安全性。各位同仁,今天我将为大家介绍一项关于嵌入式设备安全的重要研究——KARONTE,该研究发表于IEEE S&P 2020会议,由Nilo Redini等学者提出,旨在解决嵌入式固件中多二进制交互导致的不安全问题。KARONTE通过跟踪这些依赖关系,并使用有效的去污点策略,缓解了污染过度的问题,进一步提高了分析的准确性。这一策略有效缓解了路径爆炸问题,提高了分析效率。
2025-07-18 08:00:00
651
原创 CompileAgent: Automated Real-World Repo-Level Compilation with Tool-Integrated LLM-based Agent Syste
Multi-Agent Discussion:尽管存在各种用于解决推理任务的单代理方法,如自我完善(Xi等人,2023b)、自我反思(Yan等人,2024)、自我一致性(Wang等人,2024a)和选择推理(Creswell等人,2022),但本文认为这些复杂的推理方法对于解决编译错误是不必要的。在本文中,本文为讨论设置了三个代理,最多3轮。在本文中,提出了CompileAgent,这是首个专为仓库级编译设计的基于LLM的代理框架,它集成了五种工具和一种基于流程的代理策略,使LLM能够与软件工件交互。
2025-07-17 08:15:00
1170
原创 Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables论文分享
相反,本文发现,在文件末尾追加字节会降低基于梯度方法的有效性。这是合理的,因为文件长度各不相同,且随着离文件起始字节越来越远,找到可用于区分恶意软件和良性文件的信息性(非填充)字节的概率会降低。学习算法不能自动学习难 以操纵的、不变的信息,这些信息可靠地表征恶意软件, 如果不是主动设计的话,请记住这一点[4],要么提供适当的训练示例,要么对哪 些字节可能被恶意操作的先验知识进行编码。接下来,本文首先介绍所采用的实验设置,然后通过对比所提出的基于梯度的方法与简单随机字节添加的效率,对所得结果展开讨论。
2025-07-17 08:00:00
1686
原创 Examining Zero-Shot Vulnerability Repair with Large Language Models论文分享
尽管近期研究[12]表明,使用LLM(如GitHub Copilot)生成的代码补全可能引入安全弱点,但Pearce等人总结认为,模型仍能“提高软件开发人员的生产力”,尤其是在生成过程中配合“适当的安全感知工具以最小化风险”[12]。程序修复中的一个众所周知的问题是,项目的回归测试是程序正确性的薄弱代理。开箱即用的编码LLM,如OpenAI的Codex[7]和AI21的Jurassic1[8],在包含大量注释[9]–[11]和功能(既有漏洞代码也有非漏洞代码)的多语言开源代码上进行训练。
2025-07-16 08:15:00
946
原创 DetectVul: A statement-level code vulnerability detection for Python论文分享
与之前为C/C++量身定制的基于GNN的方法不同,这些方法需要多个工具来构建图,本文的方法仅依赖抽象语法树(AST)进行数据处理,这使得将本文的工作扩展到其他编程语言非常容易。值得注意的是,与之前的方法(如[8,14,17,23])不同,这些方法使用预训练的特征提取器,只训练基于GNN的分类器模型,在本文的研究中,本文将两者集成到一个模型中,并对模型进行端到端训练。为此,在提出的架构中,本文通过用灵活的类BERT架构替换GNN模型来消除对图的依赖,以学习代码片段或函数中语句之间的复杂关系。
2025-07-16 08:00:00
1167
原创 研究生算法选做作业凸包 python版
优势代码结构清晰,符合Pythonic风格正确处理共线点和退化情况支持交互式输入和随机测试适用场景计算几何基础算法教学小规模点集(n<10^4)的快速计算需要可视化验证的场景这段代码完整实现了凸包计算的核心逻辑,通过Python特有的语法特性简化了部分实现,但在排序策略和共线点处理上存在可优化空间。理解其与C++版本的差异有助于深入掌握Graham扫描算法的本质。
2025-07-15 08:15:00
880
原创 研究生算法选做作业凸包 C++版
int x, y;Point base;// 比较函数if (c!// 找到基点i < n;++i) {// 排序其他点// 过滤共线点i < n;++i) {i++;// 构建凸包i < n;cin >> n;i < n;
2025-07-15 08:00:00
766
原创 【算法设计与分析】基于Graham扫描法的二维平面点集凸包计算:研究生算法选做作业 latex+pdf
在我的代码实现问题情景下,n是用户指定输入的,接着用户可以输入相应的n个点的坐标,如果n输入-1,那么就随机生成n以及n个点的坐标,同时输出告诉用户相应的n值和n个坐标的值。Python 版本的输入输出(随机输入)如图~\ref{fig:python} 所示。\title{\heiti《算法分析与设计》选做作业} % ctex已集成黑体。C++ 版本的输入输出(用户指定输入)如图~\ref{fig:cpp} 所示。\caption{Python 实现}\caption{C++ 实现}
2025-07-14 08:15:00
1308
原创 【算法设计与分析】基于动态规划的算术表达式优化及序列划分问题求解:研究生第三次算法作业 latex+pdf
\max_{\substack{l \leq m < r \\ 0 \leq t < k}} \mathcal{DP}[l][m][t] \times \mathcal{DP}[m+1][r][k-t-1] & \text{(乘法分割)} \\。&\max_{\substack{l \leq m < r \\ 0 \leq t \leq k}} \mathcal{DP}[l][m][t] + \mathcal{DP}[m+1][r][k-t] & \text{(加法分割)}
2025-07-14 08:00:00
656
原创 【算法分析与设计】研究生第二次算法作业:基于分治策略的有序数组中位数查找与逆序对计数 latex源码和pdf
给定实数序列$A=\{a_1,a_2,...,a_N\}$,若存在下标$i<j$且$a_i>a_j$,则称有序对$(a_i, a_j)$为一个逆序对。\text{Median} = \frac{\text{第}n\text{小元素} + \text{第}(n+1)\text{小元素}}{2}逆序对在序列中体现为满足$i<j$且$a_i>a_j$的有序对$(a_i,a_j)$。由主定理可得时间复杂度为$O(\log k)$。\item 当$X[i-1] < Y[j-1]$时,排除$X$前$i$个元素。
2025-07-13 08:15:00
964
原创 【算法分析与设计】研究生第一次算法作业latex源码+pdf
设 \( F(N) = O(c f(N)) \),即存在正常数 \( C_1 \) 和 \( N_1 \),对任意 \( N \geq N_1 \),有。已知 \( g(N) = O(f(N)) \),即存在正常数 \( C_1 \) 和 \( N_1 \),对任意 \( N \geq N_1 \),有。设 \( G(N) = O(g) \),则存在正常数 \( C_2 \) 和 \( N_2 \),对任意 \( N \geq N_2 \),有。因此,\( O(c f(N)) = O(f(N)) \)。
2025-07-13 08:00:00
1540
原创 研究生算法第二次作业第二题 python版
这段Python代码实现了与之前C++代码相同的核心功能——使用归并排序算法高效计算数组中的逆序对数量。arr = list(map(int, input("请输入数组元素,空格分隔:").split()))这段代码通过归并排序的合并过程自然统计逆序对,既保持了算法的高效性,又准确解决了问题,是分治算法思想的典型实现。print("随机生成的数组:", arr)n = int(input("请输入n的值:"))print("输入长度不匹配!print("逆序对数目:", total)
2025-07-12 08:15:00
978
原创 研究生算法第二次作业第2题 C++版
该代码通过归并排序的合并过程自然地统计逆序对,既保持了算法的高效性,又准确解决了问题,是分治算法的典型应用案例。cout << "逆序对数目:" << countInversions(temp) << endl;这段C++代码实现了使用归并排序算法高效计算数组中逆序对数量的功能。cout << "请输入数组元素(空格分隔):";cout << "随机生成的数组:";cout << "请输入n的值:";
2025-07-12 08:00:00
748
基于人工智能技术的行业研报
2025-06-15
计算机网络体系结构课程大作业论文
2025-06-13
《GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing》论文分享、阅读、详解PPT+讲稿
2025-05-27
儿童节烟花代码2python实现
2025-01-15
儿童节烟花代码python实现
2025-01-15
分布式Server:Server
2025-01-11
分布式Server:IDL-ssgrade
2025-01-11
KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享
2025-07-12
【算法设计与分析】基于Graham扫描法的二维平面点集凸包计算:研究生算法选做作业
2025-07-04
【算法设计与分析】基于动态规划的算术表达式优化及序列划分问题求解:研究生第三次算法作业
2025-07-04
【算法分析与设计】研究生第一次算法作业:大O符号性质的数学证明及应用
2025-07-03
【算法分析与设计】基于分治策略的有序数组中位数查找与逆序对计数:高效算法设计及复杂度分析文档的主要内容
2025-07-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人