bzoj#3456. 城市规划

bzoj#3456. 城市规划

题目描述

Solution

用组合意义推很简单。

i i i个点的简单无向图个数为 2 ( i 2 ) 2^{\tbinom{i}{2}} 2(2i)个。
则其 E G F EGF EGF
G ( x ) = ∑ i > = 0 2 ( n 2 ) i ! x i G(x)=\sum_{i>=0}\frac{2^{\tbinom{n}{2}}}{i!}x^i G(x)=i>=0i!2(2n)xi
i i i个点的简单无向连通图个数为 f i f_i fi,则其 E G F EGF EGF为:
F ( x ) = ∑ i > = 0 f i i ! x i F(x)=\sum_{i>=0}\frac{f_i}{i!}x^i F(x)=i>=0i!fixi
考虑它的含义,简单无向图就相当于若干个简单无向连通图拼接起来,因此 G ( x ) = 1 + F ( x ) 1 ! + F ( x ) 2 2 ! + . . . G(x)=1+\frac{F(x)}{1!}+\frac{F(x)^2}{2!}+... G(x)=1+1!F(x)+2!F(x)2+...

因此 G ( x ) = e F ( x ) G(x)=e^{F(x)} G(x)=eF(x) F ( x ) = ln ⁡ G ( x ) F(x)=\ln G(x) F(x)=lnG(x)

因此时间复杂度为 O ( n l g n ) O(nlgn) O(nlgn)

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>

#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second

using namespace std;

template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }

typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;

const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1004535809;
const int inv2=(mods+1)>>1;
const int G=3;
const int Gi=(mods+1)/G;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
	int f=1,x=0; char c=getchar();
	while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
	while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
	return x*f;
}
int a[MAXN],F[MAXN];
namespace Poly
{
	int c[MAXN],f[MAXN],b[MAXN],d[MAXN],rev[MAXN],Limit,l;
	inline int upd(int x,int y){ return x+y>=mods?x+y-mods:x+y; }
	inline int quick_pow(int x,int y)
	{
		int ret=1;
		for (;y;y>>=1)
		{
			if (y&1) ret=1ll*ret*x%mods;
			x=1ll*x*x%mods;
		}
		return ret;
	}
	void Number_Theoretic_Transform(int *A,int n,int opt)
	{
		for (int i=0;i<Limit;i++) if (i<rev[i]) swap(A[i],A[rev[i]]);
		for (int mid=1;mid<Limit;mid<<=1)
		{
			int Wn=quick_pow((opt==1)?G:Gi,(mods-1)/(mid<<1));
			for (int j=0;j<Limit;j+=mid<<1)
				for (int k=j,w=1;k<j+mid;k++,w=1ll*w*Wn%mods)
				{
					int x=A[k],y=1ll*A[k+mid]*w%mods;
					A[k]=upd(x,y),A[k+mid]=upd(x,mods-y);
				}
		}
		
		if (opt==-1)
		{
			int invLimit=quick_pow(Limit,mods-2);
			for (int i=0;i<n;i++) A[i]=1ll*A[i]*invLimit%mods;
			for (int i=n;i<Limit;i++) A[i]=0;
		}
	}
	void getinv(int *F,int *G,int n) //F->invG 
	{
		if (n==1) { F[0]=quick_pow(G[0],mods-2); return; }
		getinv(F,G,(n+1)>>1);
		Limit=1,l=0;
		while (Limit<(n<<1)) Limit<<=1,l++;
		for (int i=0;i<Limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
		for (int i=0;i<n;i++) c[i]=G[i];
		for (int i=n;i<Limit;i++) c[i]=0;
		Number_Theoretic_Transform(c,n,1);
		Number_Theoretic_Transform(F,n,1);
		for (int i=0;i<Limit;i++) F[i]=1ll*upd(2,mods-1ll*F[i]*c[i]%mods)*F[i]%mods;
		Number_Theoretic_Transform(F,n,-1);
		for (int i=n;i<Limit;i++) F[i]=0;
	}
	void getln(int *a,int n) //a->ln a (a[0]=1)
	{
		memset(f,0,sizeof f);
		getinv(f,a,n);
		for (int i=0;i<n;i++) a[i]=1ll*a[i+1]*(i+1)%mods;
		
		Limit=1,l=0;
		while (Limit<(n<<1)) Limit<<=1,l++;
		for (int i=0;i<Limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
		Number_Theoretic_Transform(a,n,1);
		Number_Theoretic_Transform(f,n,1);
		for (int i=0;i<Limit;i++) f[i]=1ll*f[i]*a[i]%mods;
		Number_Theoretic_Transform(f,n,-1);
		
		for (int i=1;i<n;i++) a[i]=1ll*f[i-1]*quick_pow(i,mods-2)%mods; 
		for (int i=n;i<=Limit;i++) a[i]=0; 
		a[0]=0;
	}
	void getexp(int *F,int *a,int n) //F->exp a (a[0]=0)
	{
		memset(b,0,sizeof b);
		if (n==1) { F[0]=1; return; }
		getexp(F,a,(n+1)>>1);
		for (int i=0;i<n;i++) b[i]=F[i];
		getln(b,n);
		
		Limit=1,l=0;
		while (Limit<(n<<1)) Limit<<=1,l++;
		for (int i=0;i<Limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
		
		for (int i=0;i<n;i++) b[i]=upd(a[i],mods-b[i]);
		for (int i=n;i<Limit;i++) b[i]=F[i]=0;
		b[0]++;
		
		Number_Theoretic_Transform(F,n,1);
		Number_Theoretic_Transform(b,n,1);
		for (int i=0;i<Limit;i++) F[i]=1ll*F[i]*b[i]%mods;
		Number_Theoretic_Transform(F,n,-1);
		for (int i=n;i<Limit;i++) F[i]=0; 
	}
	void getsqrt(int *F,int *a,int n,int k) //F->sqrt^k a(a[0]=1)
	{
		memset(d,0,sizeof d);
		for (int i=0;i<n;i++) d[i]=a[i];
		getln(d,n);
		int invk=quick_pow(k,mods-2);
		for (int i=0;i<n;i++) d[i]=1ll*d[i]*invk%mods;
		getexp(F,d,n);
	} 	
	void getpow(int *F,int *a,int n,int k) //F->pow^k a(a[0]=1)
	{
		memset(d,0,sizeof d);
		for (int i=0;i<n;i++) d[i]=a[i];
		getln(d,n);
		for (int i=0;i<n;i++) d[i]=1ll*d[i]*k%mods;
		getexp(F,d,n);
	}
}
int fac[MAXN],inv[MAXN];
void Init(int n)
{
	fac[0]=1;
	for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;
	inv[n]=Poly::quick_pow(fac[n],mods-2);
	for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;
}
int main()
{
	int n=read();
	Init(n+5);
	for (int i=0;i<=n;i++) a[i]=1ll*Poly::quick_pow(2,1ll*i*(i-1)/2%(mods-1))*inv[i]%mods;
//	for (int i=0;i<=n;i++) cout<<i<<":"<<a[i]<<endl;
	Poly::getln(a,n+1);
//	for (int i=0;i<=n;i++) cout<<i<<":"<<a[i]<<endl;
	printf("%d\n",1ll*a[n]*fac[n]%mods);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值