浅谈桑基图(Sankey diagram):理论、技巧与经典案例分析

[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。因1898年Matthew Henry Phineas Riall Sankey绘制的“蒸汽机的能源效率图”而闻名,此后便以其名字命名为“桑基图”。


桑基图最明显的特征就是,始末端的分支宽度总各相等,即所有主支宽度的总和应与所有分出去的分支宽度的总和相等,保持能量的平衡。

桑基图的经典案例:
↓1869年, 查尔斯米纳德(Charles Minard)绘制的1812年拿破仑征俄图( Map of Napolean's Russian Campaign of 1812)。
[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析

2009年美国能源产出的分布以及能源的用途和损耗图,从图中可以明显看出主要的能源浪费发生于发电和交通。 点击这里可以查看原文交互式信息图表。

[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析

↓Who studies where
[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析


[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析

[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析







桑基图的绘制:
1、 e!Sankey是一款绘制桑基图的 专业软件(收费),可以免费试用一个月,目前最新版本为 e!Sankey pro 3.2.12.1
[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析


更多桑基图设计案例:
[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析

[转载]浅谈桑基图(Sankey <wbr>diagram):理论、技巧与经典案例分析

更多桑基图请见:
1、“Sankey Diagrams”,http://www.sankey-diagrams.com/ 
2、“ vi.sualize.us - sankey”,http://vi.sualize.us/tag/sankey
3、Wikipedia释义
### CiteSpaceAI聚类技术结合使用的分析 #### 工具概述 CiteSpace 是一种用于文献计量学分析和可视化展示的强大工具[^1]。它能够通过时间维度揭示科学研究的主题演化过程,并支持关键词共现、作者合作以及机构关系等多种类型的网络分析[^2]。然而,随着人工智能(AI)技术的发展,特别是机器学习中的聚类算法被广泛应用于数据分析领域,将这些先进的 AI 技术引入到传统文献分析流程中成为可能。 #### 集成方法探讨 为了实现 CiteSpace 和 AI 聚类技术的有效结合,可以考虑以下几个方面: 1. **数据预处理阶段** 在导入至 CiteSpace 前,利用自然语言处理 (NLP) 方法对原始文本进行清洗、分词及向量化操作。这一步骤有助于提高后续计算效率并增强模型表现力[^3]。 2. **特征提取优化** 结合深度学习框架如 TensorFlow 或 PyTorch 构建自定义嵌入层来代替传统的 TF-IDF 表达方式获取更高质量的语义表示形式。这种改进使得生成的结果更加贴近实际需求同时也保留了原有系统的兼容性特点[^4]。 ```python import tensorflow as tf from sklearn.feature_extraction.text import TfidfVectorizer def preprocess_texts(corpus): vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) return X.toarray() corpus = ["example sentence one", "another example two"] X = preprocess_texts(corpus) print(X.shape) ``` 3. **聚类算法替换/扩展** 尝试采用 K-Means、DBSCAN 或者 HDBSCAN 等经典无监督分类方案替代内置模块完成节点划分任务;或者进一步开发基于图神经网络(GNNs) 的解决方案以适应复杂拓扑结构下的场景需求. 4. **结果解释增强** 利用可解释性强的人工智能技术比如 SHAP(SHapley Additive exPlanations), LIME(Local Interpretable Model-Agnostic Explanations),为用户提供清晰直观的理解路径从而提升整体用户体验水平. #### 数据可视化建议 最终输出可以通过多种图表形式呈现出来,例如热力图显示不同类别间相似度矩阵情况;桑基图描绘迁移流动趋势等等。此外还可以借助交互式库 Plotly 来制作动态效果显著的地图作品以便于读者更好地把握全局概览信息. ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值