题目传送门
题目大意
视跑道为轴,有若干学生在上面跑步
学生的跑步起止时间和方向和起始位置均未知,速度为 1 m / s 1m/s 1m/s
有n个监控,监控会给出 t 和 x,表示当时间为t 的时候,x位置上至少有一个学生
求当前跑道最少有多少学生
思路
可以将学生视为点,每次监控到的学生可以有两种来源(x-t)或者(x+t),每个学生都可以用一条斜率为1或者-1的直线去覆盖,则问题可以转化为直线最少有多少条,可以用二分图将(x-t)和(x+t)分别放在两边,再用网络流求一下最小覆盖
AC Code
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
const int N=2e6 +10;
int a, b, x, t, l, r, n, sp, ep;
int cnt;
int head[N];
int dis[N];
struct node
{
int e;
int v;
int nxt;
}edge[N<<1];
inline int read(){
int ans=0;char r=getchar();
while(r<'0'||r>'9')r=getchar();
while(r>='0'&&r<='9'){ans=ans*10+r-'0';r=getchar();}
return ans;
}
inline void addl(int u,int v,int w)
{
edge[cnt].e=v;
edge[cnt].v=w;
edge[cnt].nxt=head[u];
head[u]=cnt++;
}
bool bfs()//bfs找深度
{
memset(dis,-1,sizeof(dis));//注意!不要忘了这句
dis[sp]=0;//起点深度为0,从源向汇bfs
queue<int>q;
q.push(sp);
while(!q.empty())
{
int r=q.front();q.pop();
for(int i=head[r];i!=-1;i=edge[i].nxt)
{
int j=edge[i].e;
if(dis[j]==-1&&edge[i].v)//如果这个点还没有被bfs且这条边的流量不为0
{
dis[j]=dis[r]+1;
q.push(j);
}
}
}
return dis[ep]!=-1;//若不可以到终点(起点)就返回false
}
int dfs(int u,int flo)//dfs就是求节点u及其子树在残量为flo时的最大增量
{
if(u==ep)return flo;//如果是汇,直接返回flo
int detla=flo;//用一个变量来保存flo,以方便更新其剩余残量
for(int i=head[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].e;
if(dis[v]==(dis[u]+1)&&(edge[i].v)>0)//如果满足深度条件且边可以走
{
int d=dfs(v,min(detla,edge[i].v));//向下递归
//求v及其后续节点在残量为min(detla,edge[i].v)时的最大流量
edge[i].v-=d;edge[i ^ 1].v+=d;//边的处理
//注意,编号为i的边的反向边的编号为i^1,这是根据存边时的cnt决定的
detla-=d;//将本节点的剩余残量值更新
if(detla==0)break;//如果本节点已经没有残量可消耗了,就返回
}
}
return flo-detla;//返回这个点已经被允许流过的流量
}
int dini()//求最大流量
{
int ans=0, t;
while(bfs())
{
while(t=dfs(sp, INF)) ans+=t;
}
return ans;
}
void solve()
{
memset(head,-1,sizeof(head)); cnt=0;
cin>>n;
unordered_map<int,int>L; //分别离散化二分图的两边
unordered_map<int,int>R;
int cntL=0, cntR=0;
for(int i=1; i<=n; i++){
cin>>t>>x;
if(L.count(x+t)) l=L[x+t];
else L[x+t]=++cntL, l=cntL;
if(R.count(x-t)) r=R[x-t];
else R[x-t]=++cntR, r=cntR;
addl(l, r+n, 1); //加边
addl(r+n, l, 0);
}
sp=2*n+1, ep=2*n+2; //sp为源点,ep为汇点
for(int i=1; i<=n; i++) addl(sp,i,1), addl(i,sp,0);
for(int i=1+n; i<=2*n; i++) addl(i,ep,1), addl(ep,i,0);
cout<<dini()<<endl;
}
int main()
{
int T;
cin>>T;
while(T--) solve();
return 0;
}