Prime Path
题目传送门
题目大意
给你二个素数n和m,每次可以将一个素数变成一个与其有一个数字不一样的素数,求最小步数使n变成m,不能变成的话输出"Impossible"
思路
直接标准的BFS求即可,好像把int定成long long用就会超时???注意一下
AC Code
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define endl '\n'
#define INF 0x3f3f3f3f
// #define TDS_ACM_LOCAL
const int N=1e5 +9;
int A, B;
typedef struct node{
int v, sum;
}node;
bool vis[N];
int prime[N], x; //p存数的最大质因数
int a[N], cnt; //a存四位数的素数,cnt为个数
void oulasai(int n) //欧拉筛
{
vis[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i]){
prime[x++]=i;
if(prime[x-1]>1000) a[cnt++]=prime[x-1];
}
for(int j=0;j<x;j++)
{
if(i*prime[j]>n) break;
vis[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
bool check(int a, int b){
int sum=0;
while(a!=0){
if(a%10!=b%10) sum++;
a/=10; b/=10;
}
if(sum==1) return true;
return false;
}
int BFS(){
memset(vis, 0, sizeof(vis));
queue<node> q;
q.push({A,0});
vis[A]=1;
node now;
while(!q.empty()){
now=q.front(); q.pop();
if(now.v==B) return now.sum;
for(int i=cnt-1; i>=0; i--){
node next=now;
if(!vis[a[i]] && check(next.v, a[i])){
vis[a[i]]=1;
next.v=a[i];
next.sum++;
q.push(next);
}
}
}
return -1;
}
void solve(){
cin>>A>>B;
int t=BFS();
if(t==-1) cout<<"Impossible"<<endl;
else cout<<t<<endl;
return ;
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
#ifdef TDS_ACM_LOCAL
freopen("D:\\VS code\\.vscode\\testall\\in.txt", "r", stdin);
freopen("D:\\VS code\\.vscode\\testall\\out.txt", "w", stdout);
#endif
oulasai(10000); //先用欧拉筛筛选四位数以内的素数
int T;
cin>>T;
while(T--) solve();
return 0;
}