剪绳子

https://leetcode.com/problems/integer-break/

动态规划,O(N^2)算法的话就是 枚举, p[i] = max(p[j]*p[i-j]);
注意初始化的p[0-4]是为了后面的计算。

贪心的话,基本上就是把N分解为 3 以及最后剩余的数 。 n = 4时,还是4;
直观的解释 3(n-3)>2(n-2)> 1*(n-1); (以n=5为例,故n>=5时,尽量分解为3)

class Solution {
public:
    int integerBreak(int n) {
        if (n==2)return 1;
        if (n==3)return 2;
    
// way 1 :        
//         int *p = new int[n+1];
        
//         p[0] = 0;
//         p[1] = 1;
//         p[2] = 2;
//         p[3] = 3;
        
//         for (int i=4;i<=n;i++)
//         {
//             int ans  = 0;
//             for (int j=1;j<=i/2;j++)
//             {
//                 p[i] = p[i-j]*p[j];
//                 if (p[i]>ans)ans = p[i];
//             }
//             p[i] = ans;
            
//         }
        
//        int ans = p[n];
//         delete[] p;
//         return ans;
        
//  way 2:
        int ans = 1;
       while (n>4)
       {
           ans*=3;
           n-=3;
       }
        return ans*n;
        
        
        
    }
};
在C++中,绳子问题是一个经典的动态规划问题。问题描述为:给定一根长度为n的绳子,要求将其成m段(m>1),每段绳子的长度记为k, k, ..., k[m-1],请问如何绳子使得各段绳子的乘积最大? 解决这个问题的一种常见方法是使用动态规划。具体步骤如下: 1. 定义一个数组dp,其中dp[i]表示长度为i的绳子成若干段后各段绳子长度乘积的最大值。 2. 初始化dp数组,dp和dp都为0,因为长度为0和1的绳子无法断。 3. 从长度为2开始遍历到n,对于每个长度i,计算dp[i]的值。 - 遍历j从1到i-1,表示第一段绳子的长度,可以取值范围为1到i-1。 - 计算第一段绳子长度为j时,剩余绳子的长度为i-j。 - 计算当前情况下的乘积,即j * dp[i-j]。 - 更新dp[i]的值为所有情况中乘积最大的值。 4. 最终dp[n]即为所求的结果,表示长度为n的绳子成若干段后各段绳子长度乘积的最大值。 下面是绳子问题的C++代码示例: ```cpp #include <iostream> #include <vector> using namespace std; int cutRope(int n) { if (n <= 1) { return 0; } vector<int> dp(n + 1, 0); for (int i = 2; i <= n; i++) { for (int j = 1; j < i; j++) { dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j])); } } return dp[n]; } int main() { int n = 8; int result = cutRope(n); cout << "将长度为" << n << "的绳子成若干段后各段绳子长度乘积的最大值为:" << result << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值