点击上方“Python与算法社区”,选择“星标”公众号
编辑:zglg
OPENNING
1 机器学习中数学怎么学?
做公众号期间,我和很多老铁探讨过,要想真正做到研究机器学习的水平,的确需要一定的数学基础。那么我们是不是先去修个数学系的学位,然后才能踏实地做机器学习研究呢,很显然不是。
最近,宾夕法尼亚大学计算机学院的一位教授开源了一本专门针对机器学习的必备数学基础,可谓是我们这些对机器学习感兴趣的老铁们的巨大福利啊。
让我和大家一起看看这本书的目录,该书包含以下 10 大章:
1. 线性代数
2. 仿射几何和射影几何
3. 双线性形式的几何
4. 几何:PID、UFD、诺特环、张量、PID 上的模块、规范形
5. 拓扑和微分
6. 最优化理论基础
7. 线性优化
8. 非线性优化
9. 在机器学习中的应用
10. 附录
OPENNING
2 怎么高效利用这本书?
从以上章节我们可以看到,除了基础内容,该书还从应用个角度做了讨论,比如大家一眼看上去很关心的第9大章,数组在机器学习中的应用。
参考机器之心对本书的介绍,我大概看了下,本书会有一些严格的数学证明,这样才能严谨,不过作为第一次阅读,本书作者也说了,跳过那些复杂的证明过程,直接看结论,了解基本概念即可。
从我角度来讲,我猜测大家和我一样,比较期待第1,6,7,8,9 大章节,它们都是基本的机器学习需要具备的数学基础。
每一大章节,又会包括一些章节,内容真的是全面,可以作为工具书了。
精选其中一张图:
OPENNING
下载方式
此电子书下载链接:
http://www.cis.upenn.edu/~jean/math-basics.pdf
往期推荐


长按扫码可关注
点个在看