度度熊与邪恶大魔王
Problem Description
度度熊为了拯救可爱的公主,于是与邪恶大魔王战斗起来。
邪恶大魔王的麾下有n个怪兽,每个怪兽有a[i]的生命值,以及b[i]的防御力。
度度熊一共拥有m种攻击方式,第i种攻击方式,需要消耗k[i]的晶石,造成p[i]点伤害。
当然,如果度度熊使用第i个技能打在第j个怪兽上面的话,会使得第j个怪兽的生命值减少p[i]-b[j],当然如果伤害小于防御,那么攻击就不会奏效。
如果怪兽的生命值降为0或以下,那么怪兽就会被消灭。
当然每个技能都可以使用无限次。
请问度度熊最少携带多少晶石,就可以消灭所有的怪兽。
Input
本题包含若干组测试数据。
第一行两个整数n,m,表示有n个怪兽,m种技能。
接下来n行,每行两个整数,a[i],b[i],分别表示怪兽的生命值和防御力。
再接下来m行,每行两个整数k[i]和p[i],分别表示技能的消耗晶石数目和技能的伤害值。
数据范围:
1<=n<=100000
1<=m<=1000
1<=a[i]<=1000
0<=b[i]<=10
0<=k[i]<=100000
0<=p[i]<=1000
Output
对于每组测试数据,输出最小的晶石消耗数量,如果不能击败所有的怪兽,输出-1
Sample Input
1 2
3 5
7 10
6 8
1 2
3 5
10 7
8 6
Sample Output
6
18
解题思路:
注意到防御值最大才为10,所以肯定是用防御力来遍历。设dp[j][i]为防御力为 i ,打出 j点伤害以上时所需的最少晶石。
对于第u个技能来说,如果p[u]<= i,说明根本打不出伤害,不用管。
反之,伤害则为 dmg=p[u]-i, 这时候 又有两种情况:
如果dmg>=j,说明靠这一个技能就够打出足够伤害了,那么肯定是用消耗晶石最少的那个技能,dp[j][i]=min{k[u]};
反之,光靠这个技能不足以打出足够的伤害,那么就需要借助前面的dp值来计算,dp[j-dmg][i]代表同在i防御力,打出j-dmg的伤害的最少晶石,因为dp[j-dmg][i]数量的晶石已经可以打出 j-dmg 的伤害了,此时再加上这第u个技能的伤害,就可以打到 j 以上,晶石数则为dp[j-dmg][i]+k[u],与上面一样,因为不知道哪个技能消耗的晶石最少,所以这里也取一个最小值。
Code:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
const int maxn=100000+5;
const int maxm=1000+5;
LL a[maxn],b[maxn];
LL k[maxm],p[maxm];
LL dp[maxm][15];//防御力为j,打出i点伤害以上时所需的最少晶石
LL max(LL a,LL b)
{
return a>b?a:b;
}
LL min(LL a,LL b)
{
return a<b?a:b;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
LL up1=0,up2=0,hp=0;
for(int i=0; i<n; i++)
{
scanf("%I64d%I64d",&a[i],&b[i]);
up1=max(up1,b[i]);
hp=max(hp,a[i]);
}
for(int i=0; i<m; i++)
{
scanf("%I64d%I64d",&k[i],&p[i]);
up2=max(up2,p[i]);
}
if(up1>=up2)
{
printf("-1\n");
continue;
}
mem(dp,0);
for(int i=0; i<=10; i++)//防御
{
for(int j=1;j<=hp;j++)//造成伤害值
{
dp[j][i]=1e18;
for(int u=0;u<m;u++)//第u个技能
{
LL dmg=p[u]-i;//第u个技能能造成的伤害
if(dmg<=0)
continue;
if(dmg>=j)
{
dp[j][i]=min(dp[j][i],k[u]);
}
else
{
dp[j][i]=min(dp[j][i],dp[j-dmg][i]+k[u]);
}
}
}
}
LL ans=0;
for(int i=0;i<n;i++)
{
ans+=dp[a[i]][b[i]];
}
printf("%I64d\n",ans);
}
return 0;
}