1-bit Compressive Sensing
xp_fangfei
本硕就读于燕山大学通信工程专业,研究生期间研究方向为图像处理;毕业后一直从事图像处理算法的研究;精通C++,ROS,Python,以及各种图像处理算法;可以应用paddlepaddle,pytorch,进行目标分类和目标检测模型的搭建及训练。
展开
-
对于压缩感知的浅析
传统Nyquist采样通过均匀采样获取数据,而CS系统则是以信号和观测值之间的内机形式来对数据进行采样,假设信号f为N维列向量,在N行N列的正交字典Q下具有稀疏表示即:f=Qx,变换系数x是稀疏的,那么给出的与Q不相关的观测矩阵O(K行N列),我们可以获得K为压缩的线性测量(投影):原创 2017-06-07 15:20:11 · 456 阅读 · 0 评论 -
支持向量机详解
支持向量机的原理很简单,就是VC维理论和最小化结构风险。在阅读相关论文的时候,发现很多文章都语焉不详,就连《A Tutorial on Support Vector Machines for Pattern Recognition》这篇文章对拉格朗日条件极值问题的对偶变换都只是一笔带过,让很多人觉得很困惑。下面我将就SVM对线性可分的情况作详尽的推导。原创 2017-06-08 16:34:06 · 374 阅读 · 0 评论 -
压缩感知学习
压缩感知(Compressive Sensing)学习之(二)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 上一回粗略的引入了压缩感知。 http://blog.csdn.net/zouxy09/article/details/8118313 下面就针对自己的了解,具体总结下压缩感转载 2017-06-23 09:26:07 · 583 阅读 · 0 评论 -
用DCT稀疏信号
对于各种信号,都可以说它是由多个振幅与频率不同的正弦或者余弦函数组成的。并且一个信号通常由一个直流信号DC(幅值保持不变的信号)和多个交流信号AC(幅值以某种频率周期性变化的信号)组成。而通过离散余弦变换(DCT),就可以将一个源信号分解为DC分量和AC分量,求出它各个分量的系数。对于DCT来说,其定义为:一维变换: 二维变换:首先对于DCT公式里,它有一组基转载 2017-07-16 10:21:11 · 1988 阅读 · 0 评论