高数篇(五)-- 硬阈值(Hard Thresholding)函数与软阈值(Soft Thresholding)函数解读

        本篇主要用来学习使用,阈值函数包括软阈值和硬阈值的介绍及求解,详细内容可以参考文后文章。

1 硬阈值(Hard Thresholding)函数

1.1 硬阈值(Hard Thresholding)函数的符号

        硬阈值(Hard Thresholding)并没有软阈值(Soft Thresholding)那么常见,这可能是因为硬阈值解决的问题是非凸的原因吧。硬阈值与软阈值由同一篇文献提出,硬阈值公式参见文献【1】的式(11):

        第一次邂逅硬阈值(HardThresholding)是在文献【2】中:

        在查询软阈值(Soft Thresholding)的过程中,搜到了文献【3】,进而看到了提到了文献【4】:

        文献【4】中提到的Fig 1如图所示:

        硬阈值的符号到底表示什么意思呢?以文献【1】符号为例,清晰一点来说就是这样的:

        这里 w w w是变量, λ \lambda λ是阈值。

1.2 硬阈值(HardThresholding)函数的作用

        弄清楚了硬阈值(HardThresholding)的符号表示以后,接下来说一说它的作用。这里主要是参考了软阈值的推导过程,然后作者经过一番琢磨和推导而得。

        硬阈值(HardThresholding)可以求解如下优化问题:

        其中:

         ∣ ∣ X ∣ ∣ 0 ||X||_0 ∣∣X0是求向量 X X X的零范数,即向量 X X X中非零元素的个数。根据范数的定义,可以将上面优化问题的目标函数拆开:

        其中拆分项中符号 ∣ x ∣ 0 |x|_0 x0的意思是

        现在,我们可以通过求解 N N N个独立的形如函数

        的优化问题,来求解这个问题。将 f ( x ) f(x) f(x)进一步写为:

        对于 x ≠ 0 x\not=0 x=0部分,我们知道它的最小值在 x = b x=b x=b处取得,最小值为 λ λ λ。现在的问题是 λ λ λ b 2 b^2 b2到底谁更小?最小者将是函数的最小值。求解不等式 b 2 > λ b^2>λ b2>λ可得

        此时最小值在 x = 0 x=0 x=0处取得;

        求解不等式 b 2 < λ b^2<λ b2<λ可得

        此时最小值在 x = b x=b x=b处取得;

        因此


        与前面的硬阈值(Hard Thresholding)对比一下,发现了么?若将上式中的b视为变量,sqrt(λ)视为阈值,上式即为硬阈值(Hard Thresholding)的公式。

        至此,我们可以得到优化问题

的解为


        注: 该式为硬阈值(Hard Thresholding)的矩阵形式,这里的 B B B是一个向量,应该是逐个元素分别执行硬阈值函数。

1.3 硬阈值(HardThresholding)的变形

        当优化问题变为

        因为对目标函数乘一个常系数不影响极值点的获得,所以可等价为优化问题

        此时的解为 h a r d ( B , ( 2 ∗ λ ) hard(\pmb{B},\sqrt(2*\lambda) hard(BB,( 2λ)

1.4 硬阈值(Hard Thresholding)的MATLAB代码

        硬阈值(Hard Thresholding)的函数代码可以写成专门针对优化问题

        MATLAB函数代码如下(参考了文献【5】倒数第2页):

function [ hard_thresh ] = hardthresholding( b,lambda )
    sel = (abs(b)>sqrt(lambda));
    hard_thresh = b.*sel;
end

一定要注意:这种写法是针对最开始的优化问题:

但我个人感觉更应该写成这种通用形式:

function [ x ] = hard( b,T )
    sel = (abs(b)>T);
    x = b.*sel;
end

        如此之后,若要解决优化问题


        只需调用hard(B, sqrt(λ))即可;若要解决优化问题

        只需调用hard(B, sqrt(2*λ))即可。

1.5 硬阈值(HardThresholding)测试代码

        硬阈值(Hard Thresholding)要解决的优化问题目标函数是非凸的,不太常见,手边目前没有其它函数求解这个问题,因此测试代码只能测一下这个函数编写的正确与否了:

clear all;close all;clc; 
b = [-0.8487   -0.3349    0.5528    1.0391   -1.1176]';
lambda = 0.5;
x1=hardthresholding(b,lambda)
x2=hard(b,sqrt(lambda))
fprintf('\nError between hardthresholding and hard = %f\n',norm(x1-x2))

        这里就不给出输出结果了。可以运行一下,从输出结果来看,函数的功能是正确的。

        另外,可以在matlab里输入以下命令看一个软阈值的图像:

x=-5:0.01:5;T=1;y=hard(x,T);plot(x,y);grid;

1.6 参考文献

【1】Donoho D L, JohnstoneJ M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455.

【2】Wright SJ, Nowak R D, Figueiredo M A T. Sparse reconstruction by separableapproximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493.

【3】http://blog.sina.com.cn/s/blog_6d0e97bb01015vq3.html

【4】Elad M,Figueiredo M A T, Ma Y. On the Role of Sparse and Redundant Representations inImage Processing[J]. Proceedings of the IEEE, 2010, 98(6):972-982.

【5】http://www.docin.com/p-553314466.html


2 软阈值函数(Soft Thresholding)

2.1 软阈值(Soft Thresholding)函数的符号

        软阈值(Soft Thresholding)目前非常常见,文献【1】【2】最早提出了这个概念。软阈值公式的表达方式归纳起来常见的有三种,以下是各文献中的软阈值定义符号:

文献【1】式(12):


文献【2】:

文献【3】:

文献【4】式(8):

文献【5】式(1.5):

文献【6】式(12)注释:

文献【7】:

        其中文献【1】【2】【3】【5】是第一种,也是最常见的一种;文献【4】【6】是第二种,个人认为可读性比第一种要好;文献【7】是第三种,个人认为可读性最好。当然,它们表达的意思是一样的(无论是sgn(x)还是sign(x)都是符号函数,即当 x > 0 x>0 x>0时为1,当 x < 0 x<0 x<0时为-1。)

               以文献【1】符号为例解释第一种表示方式。这里 w w w是变量, λ λ λ是阈值(非负值),符号 ( ∣ w ∣ − λ ) + (|w|-λ)_+ (wλ)+表示当 ( ∣ w ∣ − λ ) > 0 (|w|-λ)>0 (wλ)>0时则等于 ∣ w ∣ − λ |w|-λ wλ,当 ( ∣ w ∣ − λ ) < 0 (|w|-λ)<0 (wλ)<0时则等于0。那么分三种情况来讨论:第一种情况是 w > λ > 0 w>\lambda>0 w>λ>0,则 s g n ( w ) = 1 sgn(w)=1 sgn(w)=1 ∣ w ∣ = w |w|=w w=w ( ∣ w ∣ − λ ) (|w|-λ) (wλ)一定大于0, ( ∣ w ∣ − λ ) + = ∣ w ∣ − λ (|w|-λ)_+=|w|-λ (wλ)+=wλ,所以 η S ( w , λ ) = w − λ η_S(w,λ)=w-λ ηS(w,λ)=wλ;第二种情况是 w < − λ < 0 w<-λ<0 w<λ<0,则 s g n ( w ) = − 1 sgn(w)=-1 sgn(w)=1 ∣ w ∣ = − w |w|=-w w=w ( ∣ w ∣ − λ ) (|w|-λ) (wλ)也一定大于0, ( ∣ w ∣ − λ ) + = ∣ w ∣ − λ (|w|-λ)_+=|w|-λ (wλ)+=wλ,所以 η S ( w , λ ) = − 1 ∗ ( − w − λ ) = w + λ η_S(w,λ)=-1*(-w-λ)= w+λ ηS(w,λ)=1(wλ)=w+λ;第三种情况是 ∣ w ∣ < λ |w|<λ w<λ,此时 ( ∣ w ∣ − λ ) (|w|-λ) (wλ)一定小于0,则 ( ∣ w ∣ − λ ) + = 0 (|w|-λ)_+=0 (wλ)+=0,所以 η S ( w , λ ) = 0 η_S(w,λ)=0 ηS(w,λ)=0。因此

         以文献【6】符号为例解释第二种表示方式。这种表示方式中符号 m a x ∣ u ∣ − a , 0 max{|u|-a,0} maxua,0的作用与第一种表示方式中的符号 ( ∣ w ∣ − λ ) + (|w|-λ)_+ (wλ)+的作用一样,即当 ( ∣ u ∣ − a ) > 0 (|u|-a)>0 (ua)>0 m a x ∣ u ∣ − a , 0 = ( ∣ u ∣ − a ) max{|u|-a,0}=(|u|-a) maxua,0=(ua),当 ( ∣ u ∣ − a ) < 0 (|u|-a)<0 (ua)<0时, m a x ∣ u ∣ − a , 0 = 0 max{|u|-a,0}=0 maxua,0=0,知道了这一点剩下的分析与第一种表示方式相同。

           综上,三种表示方式均是一致的。

2.2 软阈值(Soft Thresholding)函数的作用

        弄清楚了软阈值(Soft Thresholding)的符号表示以后,接下来说一说它的作用。以下内容主要参考了文献【7】,这是一个非常棒的PPT!!!

        软阈值(SoftThresholding)可以求解如下优化问题:

        其中:

        根据范数的定义,可以将上面优化问题的目标函数拆开:

        也就是说,我们可以通过求解 N N N个独立的形如函数


        的优化问题,来求解这个问题。由中学时代学过的求极值方法知道,可以求函数 f ( x ) f(x) f(x)导数:

        这里要解释一下变量x绝对值的导数,当x>0时,|x|=x,因此其导数等于1;当x<0时,|x|=-x,因此其导数等于-1;综合起来,x绝对值的导数等于sgn(x)。令函数f(x)导数等于0,得:

        这个结果等号两端都有变量x,需要再化简一下。下面分三种情况讨论:

(1)当b>λ/2时

        假设x<0,则sgn(x)=-1,所以x=b+λ/2>0,与假设x<0矛盾;

        假设x>0,则sgn(x)=1,所以x=b-λ/2>0,成立;

        所以此时在x=b-λ/2>0处取得极小值:

        即此时极小值小于f(0),而当x<0时

        即当x<0时函数f(x)为单调降函数(对任意△x<0,f(0)<f(△x))。因此,函数在x=b-λ/2>0处取得最小值。

(2)当b<-λ/2时

        假设x<0,则sgn(x)=-1,所以x=b+λ/2<0,成立;

        假设x>0,则sgn(x)=1,所以x=b-λ/2<0,与假设x<0矛盾;

        所以此时在x=b+λ/2<0处取得极小值:

        即此时极小值小于f(0),而当x>0时

        即当x>0时函数f(x)为单调升函数(对任意△x>0,f(△x)>f(0))。因此,函数在x=b+λ/2<0处取得最小值。

(3)当-λ/2<b<λ/2时(即|b|<λ/2时)

        假设x<0,则sgn(x)=-1,所以x=b+λ/2>0,与假设x<0矛盾;

        假设x>0,则sgn(x)=1,所以x=b-λ/2<0,与假设x<0矛盾;

        即无论x为大于0还是小于0均没有极值点,那么x=0是否为函数f(x)的极值点呢?

        对于△x≠0,

        当△x >0时,利用条件b<λ/2可得

        当△x <0时,利用条件b<λ/2可得(注:此时|△x |=-△x)

        因此,函数在x=0处取得极小值,也是最小值。

        综合以上三种情况,f(x)的最小值在以下位置取得:

        与前面的软阈值(Soft Thresholding)对比一下,发现了么?若将上式中的b视为变量,λ/2视为阈值,上式即为软阈值(SoftThresholding)的公式。

        至此,我们可以得到优化问题

的解为

        注:该式为软阈值(Soft Thresholding)的矩阵形式。

2.3 软阈值(Soft Thresholding)的变形

        当优化问题变为

        因为对目标函数乘一个常系数不影响极值点的获得,所以可等价为优化问题

此时的解为soft(B, λ)。

2.4 软阈值(Soft Thresholding)的MATLAB代码

        软阈值(Soft Thresholding)的函数代码可以写成专门针对优化问题

        软阈值(Soft Thresholding)是如此简单以至于可以用一句代码去实现它[8]:

        当然,如果不习惯这种形式,也可以写成常见的函数形式:

function [ soft_thresh ] = softthresholding( b,lambda )
    soft_thresh = sign(b).*max(abs(b) - lambda/2,0);
end

        一定要注意:这种写法是针对最开始的优化问题:

        但我个人感觉更应该写成这种通用形式:

function [ x ] = soft( b,T )
    x = sign(b).*max(abs(b) - T,0);
end

        如此之后,若要解决优化问题

只需调用soft(B, λ/2)即可;若要解决优化问题


只需调用soft(B, λ)即可。

2.5 软阈值(Soft Thresholding)测试代码

        用以下一小段代码测试一下软阈值,用来求解优化问题:

        这里用的对比函数是基追踪降噪(BPDN_quadprog.m),参见压缩感知重构算法之基追踪降噪(Basis PursuitDe-Noising, BPDN) (http://blog.csdn.net/jbb0523/article/details/52013669),使用BPDN时,实际上就是观测矩阵为单位阵时的一种特殊情况:

clear all;close all;clc; 
b = [-0.8487   -0.3349    0.5528    1.0391   -1.1176]';
lambda = 1;
x1=soft(b,lambda)
x2=BPDN_quadprog(b,eye(length(b)),lambda)
fprintf('\nError between soft and BPDN = %f\n',norm(x1-x2))

        这里就不给出输出结果了。运行后,观察输出结果可知,soft函数与BPDN_quadprog函数的输结果相同。

        另外,可以在matlab里输入以下命令看一个软阈值的图像:

x=-5:0.1:5;T=1;y=soft(x,T);plot(x,y);grid;


2.6 总结

        可以发现,软阈值解决的优化问题和基追踪降噪问题很像,但并不一样,而且需要格外说明的是,软阈值并能不解决基追踪降噪问题,文献【8】在最后明确说明了这一点:

2.7 参考文献

【1】Donoho D L, JohnstoneJ M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455.

【2】Donoho D L.De-noising by soft-thresholding[J]. IEEE transactions on information theory,1995, 41(3): 613-627.

【3】Bredies K, Lorenz D.Iterative soft-thresholding converges linearly[R]. Zentrum fürTechnomathematik, 2007.

【4】Bioucas-Dias J M,Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholdingalgorithms for image restoration[J]. IEEE Transactions on Image processing,2007, 16(12): 2992-3004.

【5】Beck A, Teboulle M. Afast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM journal on imaging sciences, 2009, 2(1): 183-202.

【6】Wright S J, Nowak RD, Figueiredo M A T. Sparse reconstruction by separable approximation[J]. IEEETransactions on Signal Processing, 2009, 57(7): 2479-2493.

【7】谷鹄翔.IteratedSoft-Thresholding Algorithm[Report,slides]. http://www.sigvc.org/bbs/thread-41-1-2.html

【8】http://www.simonlucey.com/soft-thresholding/

【9】http://blog.sina.com.cn/s/blog_6d0e97bb01015vq3.html


参考文章

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值