Deep Learning
文章平均质量分 95
主要介绍深度学习中常用的网络模型及实现
长路漫漫2021
I confess that I have been blind as a mole, but it is better to learn wisdom late than never to learn it at all.
展开
-
生成对抗网络简介
本篇我将简单介绍GANs,虽然会涉及一些数学内容。然后,我将训练一个用于MNIST数字的简单GAN,并讨论训练GANs时遇到的一些挑战。翻译 2024-01-23 20:30:00 · 363 阅读 · 0 评论 -
学习率设置
本篇主要学习神经网络超参数学习率的设置,包括人工调整和策略调整学习率。在模型优化中,常用到的几种学习率衰减方法有:分段常数衰减、多项式衰减、指数衰减、自然指数衰减、余弦衰减、线性余弦衰减、噪声线性余弦衰减。......原创 2022-07-14 19:35:51 · 16862 阅读 · 0 评论 -
《动手学深度学习》(八) -- 多尺度标检测和单发多框检测
本篇继续学习《动手学深度学习》多尺度目标检测和单发多框检测(SSD)部分,包括多尺度锚框和多尺度检测,同时训练单发多框检测模型。原创 2022-08-09 19:59:05 · 1892 阅读 · 1 评论 -
《动手学深度学习》(七) -- 边界框和锚框
本篇主要学习目标检测里用到的边界框、锚框的基础概念和实现,包括交并比、在训练数据中标注锚框,和使用非极大值抑制预测边界框。原创 2022-07-21 20:02:26 · 3251 阅读 · 1 评论 -
《动手学深度学习》(六) -- 图像增广与微调
本篇学习《动手学深度学习》计算机视觉部分,主要涉及图像增广的一些技巧和使用迁移学习里的微调,进行更好的网络训练。原创 2022-07-11 11:46:15 · 1810 阅读 · 1 评论 -
《动手学深度学习》(五) -- 多GPU训练
本篇主要学习了如何进行多个GPU并行训练神经网络。原创 2022-07-08 17:00:20 · 2289 阅读 · 0 评论 -
《动手学深度学习》(四) -- LeNet、AlexNet、VGG、NiN、GoogLeNet、ResNet、DenseNet 实现
本篇继续学习现代卷积神经网络,主要学习LeNet、AlexNet、使⽤重复块的⽹络(VGG)、⽹络中的⽹络(NiN)、含并⾏连结的⽹络(GoogLeNet)、残差⽹络(ResNet)、稠密连接⽹络(DenseNet)的搭建,便于我们后续复杂网络的学习。............原创 2022-07-05 11:35:04 · 1255 阅读 · 0 评论 -
《动手学深度学习》(三) -- 卷积神经网络 CNN
本节主要是《动手学深度学习》卷积神经网络基础部分,学习了图像卷积、填充和步幅、多输入多输出通道、汇聚层的基本概念和实现。转载 2022-07-02 16:44:10 · 1101 阅读 · 4 评论 -
《动手学深度学习》(二)-- 多层感知机
本节主要学习《动手学深度学习》多层感知机部分,包括多层感知机从零开始实现、简介实现,并以多项式回归展示模型欠拟合和过拟合,解决以上问题,引入权重衰减和暂退法(Dropout),并进行实现和调用PyTorch的API进行实现。......原创 2022-07-01 11:01:27 · 1330 阅读 · 3 评论 -
《动手学深度学习》(一)-- 线性神经网络
本篇主要学习了李沐老师的《动手学深度学习》第三章线性神经网络部分,主要内容包括线性回归和softmax回归。原创 2022-06-27 23:11:48 · 784 阅读 · 0 评论 -
线性分类器学习笔记
本篇主要整理自北邮鲁鹏老师的《计算机视觉与深度学习》第一部分图像分类任务和线性分类器设计。原创 2022-06-15 23:01:07 · 351 阅读 · 0 评论 -
Sigmoid型函数、ReLU函数
激活函数是全连接神经网络中的一个重要部分,缺少了激活函数,全连接神经网络将退化为线性分类器。本篇主要介绍最常用的Sigmod型函数和Relu函数,了解这些函数的特性,也更有利于对相应的模型选择合适的激活函数。原创 2022-01-01 23:43:09 · 3683 阅读 · 0 评论