'''
优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据
缺点:可能会产生过度匹配问题
适用数据类型:数值型和标称型
信息增益:ID3
信息增率:C4.5
基尼指数:CART
'''
from math import log
import operator
#计算给定数据集的香农熵
def calcShannonEnt(dataSet):
numEntries = len(dataSet) #计算数据集中实例的总数
labelCounts = {} #创建一个字典
for featVec in dataSet:
currentLabel = featVec[-1] #其键值为数据集最后一列数值
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0 #如果当前键值不存在,则扩展字典并将当前键值加入字典
labelCounts[currentLabel] += 1 #每个键值都记录了当前类别出现的次数
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries #统计所有类标签发生的次数 ,计算类别出现的概率
shannonEnt -= prob * log(prob, 2) #以2为底求对数,计算香农熵
return shannonEnt
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataSet, labels
def splitDataSet(dataSet, axis, value):
#输入参数:待划分的数据集,划分数据集的特征,特征的返回值
retDataSet = [] #防止原始数据集被修改,声明一个新的列表对象
for featVec in dataSet: #遍历数据集中的每个元素
if featVec[axis] == value: #抽取符合特征的数据
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis + 1:])
retDataSet.append(reducedFeatVec)
return retDataSet
def chooseBestFeatureToSplit(dataSet):
#选择最好的数据集划分方式
'''
调用时数据需要满足的要求:
数据必须是由相同数据长度的列表元素组成的列表,
数据的最后一列或每个实例的最后一个元素是类别标签
'''
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet) #计算整个数据集的香农熵
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures): #遍历数据集的所有特征
featList = [example[i] for example in dataSet] #将数据集中所有第i个特征值写入新列表中
uniqueVals = set(featList) #将列表转为集合数据类型,快速得到列表中唯一元素值
newEntropy = 0.0
for value in uniqueVals: #遍历当前特征中所有的唯一属性值
subDataSet = splitDataSet(dataSet, i, value) #对每个特征划分一次数据集
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet) #计算数据集的新熵值,并对所有唯一特征值得到的熵求和
infoGain = baseEntropy - newEntropy #计算信息增益,熵的减少
if (infoGain > bestInfoGain): #比较所有特征的信息增益
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
#相当于投票表决,采用多数表决的方法决定该叶节点的分类
classCount = {}
for vote in classList:
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
return sortedClassCount[0][0]
def createTree(dataSet,labels):
#创建树,输入参数为数据集和标签列表
classList = [example[-1] for example in dataSet] #创建包含数据集所有类标签的列表
if classList.count(classList[0]) == len(classList): #类别完全相同则停止继续划分
return classList[0]
if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #选取最好的特征划分
bestFeatLabel = labels[bestFeat] #最好特征对应的标签
myTree = {bestFeatLabel:{}} #用于存储树的信息的字典变量
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues) #得到列表包含的所有属性值
for value in uniqueVals:
subLabels = labels[:] #为了不改变原始列表内容,复制类标签,使用新变量代替原始列表
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def classify(inputTree, featLabels, testVec):
firstSides = list(inputTree.keys())
firstStr = firstSides[0] #第一次划分数据集的类标签
secondDict = inputTree[firstStr] #第一次划分数据集的类标签所附带的子节点取值
featIndex = featLabels.index(firstStr) #使用index方法查找当前列表中第一个匹配firstStr变量的元素
for key in secondDict.keys(): #递归遍历整棵树,比较testVec变量中的值与树节点的值
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else: classLabel = secondDict[key] #如果到达叶子节点,则返回当前节点的分类标签
return classLabel
def storeTree(inputTree, filename):
#使用模块pickle序列化对象,序列化对象可以在磁盘上保存对象并在需要的时候读取出来
import pickle
fw = open(filename,'w')
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
决策树可视化
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle = 'sawtooth', fc = '0.8') #定义文本框和箭头格式
leafNode = dict(boxstyle = 'round4', fc = '0.8')
arrow_args = dict(arrowstyle = '<-')
def plotNode(nodeTxt, centerPt, parentPt, nodeType): #绘制带箭头的注解
createPlot.ax1.annotate(nodeTxt, xy = parentPt, xycoords = 'axes fraction',
xytext = centerPt, textcoords = 'axes fraction',
va = 'center', ha = 'center', bbox = nodeType,arrowprops = arrow_args)
def getNumLeafs(myTree):
#获取叶节点的数目
numLeafs = 0
firstSides = list(myTree.keys())
firstStr = firstSides[0] #第一次划分数据集的类标签
secondDict = myTree[firstStr] #第一次划分数据集的类标签所附带的子节点取值
for key in secondDict.keys(): #遍历整棵树的所有子节点
if type(secondDict[key]).__name__== 'dict': #如果子节点是字典类型,则该节点是一个判断结点,否则为叶节点
numLeafs += getNumLeafs(secondDict[key])
else: numLeafs += 1 #累计叶子节点的个数并返回该数值
return numLeafs
def getTreeDepth(myTree):
#获取树的层数
maxDepth = 0
firstSides = list(myTree.keys())
firstStr = firstSides[0] #第一次划分数据集的类标签
secondDict = myTree[firstStr] #第一次划分数据集的类标签所附带的子节点取值
for key in secondDict.keys(): #统计遍历过程中遇到判断节点的个数
if type(secondDict[key]).__name__== 'dict':
thisDepth = 1 + getTreeDepth(secondDict[key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
def retrieveTree(i):
#预先存储的树的信息
listOfTrees = [{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}]
return listOfTrees[i]
def plotMidText(cntrPt, parentPt, txtString):
#计算父节点和子节点的中间位置,并在此处添加简单的文本标签信息
xMid = (parentPt[0] - cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1] - cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
numLeafs = getNumLeafs(myTree) #计算树的宽度
depth = getTreeDepth(myTree) #计算树的深度
firstSides = list(myTree.keys())
firstStr = firstSides[0] #第一次划分数据集的类标签
#追踪已经绘制的节点位置,以及放置下一个节点的恰当位置
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
#树的宽度用于计算放置判断节点的位置,原则是将它放在所有叶子节点的中间
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD #由于是自顶向下绘制图形,故依次递减y坐标
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict': #如果节点是判断节点则递归调用plotTree()函数
plotTree(secondDict[key], cntrPt, str(key))
else: #如果节点是叶子节点,则在图形上画出叶子节点
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD #绘制了所有子节点后,增加y坐标的偏移
def createPlot(inTree):
fig = plt.figure(1,facecolor = 'white')
fig.clf() #创建新图形并清空绘图区
axprops = dict(xticks = [], yticks = [])
createPlot.ax1 = plt.subplot(111, frameon = False, **axprops)
#使用树的宽度与深度计算树节点的摆放位置
plotTree.totalW = float(getNumLeafs(inTree)) #存储树的宽度
plotTree.totalD = float(getTreeDepth(inTree)) #存储树的深度
plotTree.xOff = -0.5/plotTree.totalW
plotTree.yOff = 1.0
plotTree(inTree,(0.5,1.0), '')
plt.show()