传统信息架构的缺陷
随着数字化转型的深入,发现既有信息架构已经无法满足自身业务需要,主要体现在以下
几个方面。
1)大量业务和作业所产生的数据并没有完整地被管理
很多情况下,并不是所有业务和作业所产生的数据都在系统中承载,因为大量IT系统中已经承载的数据,往往都是为了满足流程的标准化需要而存在的。例如,每个与客户签订的合同都非常复杂,包括诸多的条款,华为公司签订的合同通常会有上百页内容,但信息架构往往只定义了数百个数据属性,IT系统中也只承载了这部分内容,而大量的数据是以文档的形式存在的。当要对某个合同进行签订前的评审时,如果想基于过去已签订的合同的条款进行基线参考和验证,那么是无法通过自动化手段高效实现的,只能通过人工翻阅历史合同来实现,完整性和准确性都无法保障,而且效率很低。
2)大量业务过程没有形成可视、可管理的数据
业务在执行某个具体活动时是有大量作业过程的,但这部分数据往往并没有得到管理。例如,过去只记录了物流各个节点的实际到达信息,但缺乏过程信息记录,假如想实时了解具体的物流状态,只能通过电话、邮件一次次询问,增加大量沟通成本,并且信息的及时性也得不到保障。
3)大量业务规则缺乏管理、无法灵活使用
在业务执行中存在大量规则,但绝大部分规则都缺乏有效管理,往往只能通过文件和文档管理,即使有部分规则固化到了IT系统中,也是无法灵活调整的。例如,有业务人员经常抱怨,由于每年都会发布一些文件来制订业务规范,因此自己不知道哪些是最新的,以及多个历史规范之间是否有重叠和矛盾;另外,如果想基于业务变化对规则进行刷新,但这些规则都固定在IT代码中,IT系统动辄需要数个月才能完成修改,而此时业务可能又发生了新的变化。
数字化转型扩展
华为公司在传统信息架构的基础上,提出了面向数字化转型的扩展:对象数字化、过程数字化、规则数字化,并打造与之相应的能力。
1)对象数字化
对象数字化的目标是建立对象本体在数字世界的映射。这种映射不是传统意义上基于流程要求的少量数据的管理,而是管理某个对象的全量数据。
以产品研发和设计为例,信息架构过去只管理产品数据进入ERP管道所必需的少量内容,如产品编码、描述、BOM清单等,而基于对象数字化则需要建立完整的数字孪生(Digital Twin),也要管理与之相应的完整信息架构。过去,供应部门经常抱怨产品研发部门所提供的“重量”“体积”信息不准确,而研发部门又没有足够的人力在产品进入生产环节前精准测量每个产品、部件、元器件。但是,实际上研发在设计过程中会多次产生并使用这些重量和体积信息,因为这对研发设计也同样重要。在推行对象数字化后,就可以通过数据感知等手段在设计的各个环节记录上述这些数据,并按项目编码进行更新,这样就可以向供应环节提供准确并且全量的数据。
2)过程数字化
仅仅管理好结果还不够,有时我们需要把作业过程记录下来,了解过程进度或者反过来改进结果。这种记录首先是不干预业务活动的,并且能够自动记录(例如,车辆行驶中自动监控是否存在交通违规)。
过程数字化要实现业务活动线上化,并记录业务活动的执行或操作轨迹,一般通过观测数据来实现轨迹记录,如图4-9所示。
以前面举过的物流场景为例,华为公司通过推进业务过程数字化,实现供应链对各类物流状态的实时感知和可视,大幅缩减了发货后反复人工沟通的成本。
3)规则数字化
规则数字化的目的是把复杂场景下的复杂规则用数字化手段进行管理。良好的规则数字化管理,应该能实现业务规则与IT应用解耦,所有关键业务规则数据要实现可配置,能够根据业务的变化灵活调整。
同样以物流场景为例,通常业务希望基于计划对各个环节的物流任务进行监控和预警,这需要大量的预警规则。例如,某个部件的物流周期是1周,当5天后要交付而对应物流还未发货,则应该预警。但是,不同物料、不同场景、不同国家的供应能力往往是有差异的,并且随着环境经常动态变化,这就需要将对应的规则数据从IT应用中解耦出来,单独定义这类数据资产的信息架构,从而使之能够灵活调整。这样,不同国家的业务人员就可以根据需要随时调整规则,而不用对现有IT系统进行大的改动,最大程度地满足业务灵活性的要求。