53.最大子序和-Java实现

相关标签

  • 数组
  • 分治算法
  • 动态规划

题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

 

解法1:贪心算法/动态规划(√)

 
动态转移方程:

f[i] = max{ nums[i] , f[i-1] + nums[i] }
 

初始条件:

f[0] = nums[0]

 
代码:

class Solution {
    public int maxSubArray(int[] nums) {
        int pre = 0;
        int sum = nums[0];
        for (int i = 0; i < nums.length; i++) {
            // 如果前i项的和小于第i项的值 则将pre置为当前项的值
            pre = Math.max(pre + nums[i] , nums[i]);
            sum = Math.max(sum , pre);
        }
        return sum;
    }
}

时间复杂度:O(n),空间复杂度:O(1)

执行用时:1ms
 

解法2:分治算法(√)

class Solution {
    public int maxSubArray(int[] nums) {
        return maxSubArraySum(nums, 0, nums.length-1);
    }

    /**
     * 计算[left,right]的最大子序和
     * @param nums
     * @param left
     * @param right
     * @return
     */
    public static int maxSubArraySum(int[] nums, int left, int right) {
    
        if (left == right) {
            return nums[left];
        }
        int mid = (left + right) / 2;
        // 如果最大子序和落在mid左边,计算[left,mid]的最大子序和
        int maxLeftSum = maxSubArraySum(nums, left, mid);
        
        // 如果最大子序和落在mid右边,计算[mid+1,right]的最大子序和
        int maxRightSum = maxSubArraySum(nums, mid + 1, right);
        
        // 如果最大子序和跨中点mid
        int maxMidSum = findMaxCrossingSubArray(nums, left, mid, right);
        
        // 返回左、中、右三个值中最大值即为最大子序和
        return Math.max(Math.max(maxLeftSum,maxRightSum),maxMidSum);
    }

    /**
     * 计算跨中点mid的最大子序和,分别计算从mid到左和从mid+1到右的最大子序和相加
     * @param nums
     * @param left
     * @param mid
     * @param right
     * @return
     */
    public static int findMaxCrossingSubArray(int[] nums, int left, int mid, int right) {
    
        //类似寻找最大最小值的题目,初始值一定要定义成理论上的最小最大值(可能为负数组)
        // maxLeftBorderSum :从 mid 往左找到的最大子序和
        // maxRightBorderSum :从 mid+1 往右找到的最大子序和
        int maxLeftBorderSum = Integer.MIN_VALUE, maxRightBorderSum = Integer.MIN_VALUE, sum = 0;
        
        for (int i = mid; i >= left; --i) {
            sum +=nums[i];
            maxLeftBorderSum = Math.max(maxLeftBorderSum,sum);
        }
        
        // 计算从mid+1 到right的最大子序和,sum清零
        sum = 0;
        for (int i = mid + 1; i <= right; ++i) {
            sum+=nums[i];
            maxRightBorderSum = Math.max(maxRightBorderSum,sum);
        }
        return maxLeftBorderSum + maxRightBorderSum;
    }
}

时间复杂度:O(n),空间复杂度:O(logn)

执行用时:3ms

「解法2」相较于「解法1」来说,时间复杂度相同,但是因为使用了递归,运行的时间略长,空间复杂度也不如解法1优秀,而且难以理解。那么这种方法存在的意义是什么呢?
对于这道题而言,确实是如此的。但是仔细观察「解法2」,它不仅可以解决区间 [0, n - 1],还可以用于解决任意的子区间 [l, r] 的问题。如果我们把 [0, n - 1]分治下去出现的所有子区间的信息都用堆式存储的方式记忆化下来,即建成一颗真正的树之后,我们就可以在 O(logn) 的时间内求到任意区间内的答案,我们甚至可以修改序列中的值,做一些简单的维护,之后仍然可以在 O(logn) 的时间内求到任意区间内的答案,对于大规模查询的情况下,这种方法的优势便体现了出来。这棵树就是——线段树。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值