/*
zoj 2124 数论
题意:求使得 x = b^p的最大的p。
思路:将n分解质因数,原题相当于求所有质因子次数的最大公约数。
注意有负数情况,若为负数则应求最大奇公约数。
*/
#include <iostream>
#include <cstdio>
#include <string.h>
#include <vector>
#include <algorithm>
#include <limits.h>
#include <math.h>
using namespace std;
int prime[30000];
bool is_prime[50000];
vector <int>v;
int gcd( int a,int b )
{
return b==0 ? a : gcd( b,a%b );
}
int solve( long long n )
{
int i=0,co;
while( n!=1 )
{
co=0;
if( prime[i]>sqrt(n) )
break;
if( n%prime[i]==0 )
{
while( n%prime[i]==0 )
co++ , n/=prime[i];
v.push_back(co);
}
i++;
}
if( v.empty() ) return 1;
sort( v.begin(),v.end() );
for( i=1;i<v.size();i++ )
v[i]=gcd( v[i],v[i-1] );
return v[v.size()-1];
}
int main()
{
long long i,j,k,n,t; //注意在我的写法中n是要用long long
memset( is_prime,1,sizeof(is_prime) );
k=0;
for( i=2;i<50000;i++ )
{
if( is_prime[i] ) prime[k++]=i;
for( j=0;j<k;j++ )
{
if( i*prime[j]>50000 ) break;
is_prime[ i*prime[j] ]=0;
if( i%prime[j]==0 ) break;
}
}
while( cin>>n && n )
{
if(n>0) cout<<solve(n)<<endl;
else
{
t=solve( -n ); //因为这里取反,如果不用long long,-(INT_MIN)无法表示。
while( t%2==0 ) t/=2; //因为这里FPE了无数次。。
cout<<t<<endl;
}
v.clear();
}
return 0;
}
zoj 2124 Perfect Pth Powers
最新推荐文章于 2021-02-17 13:26:15 发布