深度学习框架Tensorflow学习与应用(二Tensorflow的基础使用,包括对图(graphs),会话(session),张量(tensor),变量(Variable)的一些解释和操作)

Tensorflow基本概念
使用图(graphs)来表示计算任务
在被称之为会话(Session)的上下文 (context)中执行图
使用tensor表示数据
通过变量(Variable)维护状态
使用feed和fetch可以为任意的操作赋值活着从其中获取数据

Tensorflow是一个编程系统,使用图(gaphs)中的节点称为op (operation),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。 Tensor看作一个n维的数组或列表。图必须在会话(Session)里被启动。
Tensorflow结构

op表示:加法运算,减法运算,乘法运算。
一个session里面有两个图。图表示计算的过程

启动jupyter
zhangjinyudeMacBook-Pro:~ zhangjinyu$ jupyter notebook

 

2.1

import tensorflow as tf
g=tf.Graph()

with g.device("/gpu:0"):
    c_1 = a + b
    print(c_1.graph)
    a = tf.constant([10,9,9,7])
    b = tf.constant([1,2,3,4])

    print(a.graph, b.graph)
    sess = tf.Session()
    print(sess.run(c_1(a,b)))

2-2在我的开发环境中代码中加入# -*- coding: utf-8 -*-,会代码补全

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-

import tensorflow as tf
#创建一个常量op
m1 = tf.constant([[3,3]]) #两行一列

#创建一个常量op
m2 = tf.constant([[2],[3]]) #一行两列

#创建一个矩阵乘法op,把m1和m2传入
product = tf.matmul(m1,m2)

#输出
print(product)

with tf.Session() as sess:
    #调用sess的run方法来执行矩阵乘法op
    # run(product)触发了图中3个op
    result = sess.run(product)
    print(result)

 

2-3

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-

import tensorflow as tf
#变量
x = tf.Variable([1,2])

#定义常量
a = tf.constant([3,3])

#增加一个减法的op
sub=tf.subtract(x,a)

#增加一个加法的op
add = tf.add(x,sub)

#全局变量的初始化
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run(sub))
    print(sess.run(add))

#创建一个变量初始化为0
state=tf.Variable(0,name='counter')

#创建一个op,作用是使state加1
new_value=tf.add(state,1)
#赋值,后面的给前面的数值,赋值op
update = tf.assign(state,new_value)

#因为用到变量,所以也需要初始化
init = tf.global_variables_initializer()

#定义会话
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(state))
    #定义一个循环
    for _ in range(5):
        sess.run(update)
        print(sess.run(state))

2-4

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
#fetch
import tensorflow as tf

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)

add = tf.add(input2, input3)
mul = tf.multiply(input1, add)

with tf.Session() as sess:
    result = sess.run([mul, add])
    print(result)
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
#fetch
import tensorflow as tf

#Feed
#创建占位符,可以在会话中调用使用,运行时传入
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1,input2)

with tf.Session() as sess:
    #Feed的数据以字典的形式传入
    print(sess.run(output, feed_dict={input1:[7.], input2:[2.]}))

2-5

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-

import tensorflow as tf
import numpy as np

#使用numpy生成100个随机的点
x_data = np.random.rand(100)
y_data = x_data*0.1 +0.2  #相当于一条直线

#构造一个线性模型,b,k变量,0. 0. 可以改变例如1.1 ,0.5
b = tf.Variable(0.)
k = tf.Variable(0.)
y = k*x_data + b #k斜率 , b截距

#需要优化斜率和截距接近于样本点
#定义一个二次代价函数,tf.reduce_mean代表求平均值;tf.square代表平方
#y_data代表真实值,y代表预测值  ;y_data-y代表真实值减去预测值=误差
loss = tf.reduce_mean(tf.square(y_data - y))

#定义一个梯度下降法来进行训练的优化器,给一个0.2的优化率
optimizer = tf.train.GradientDescentOptimizer(0.2)
#最小化代价函数,求loss最小,越接近真实值
train = optimizer.minimize(loss)

#前面使用了变量,所以需要变量初始化
init = tf.global_variables_initializer()
print(tf.square(3))
with tf.Session() as sess:
    sess.run(init)
    for step in range(201):
        sess.run(train)
        if step%20==0:
            print(step,sess.run([k,b]))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值