Tensorflow基本概念
使用图(graphs)来表示计算任务
在被称之为会话(Session)的上下文 (context)中执行图
使用tensor表示数据
通过变量(Variable)维护状态
使用feed和fetch可以为任意的操作赋值活着从其中获取数据
Tensorflow是一个编程系统,使用图(gaphs)中的节点称为op (operation),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。 Tensor看作一个n维的数组或列表。图必须在会话(Session)里被启动。
Tensorflow结构
op表示:加法运算,减法运算,乘法运算。
一个session里面有两个图。图表示计算的过程
启动jupyter
zhangjinyudeMacBook-Pro:~ zhangjinyu$ jupyter notebook
2.1
import tensorflow as tf
g=tf.Graph()
with g.device("/gpu:0"):
c_1 = a + b
print(c_1.graph)
a = tf.constant([10,9,9,7])
b = tf.constant([1,2,3,4])
print(a.graph, b.graph)
sess = tf.Session()
print(sess.run(c_1(a,b)))
2-2在我的开发环境中代码中加入# -*- coding: utf-8 -*-,会代码补全
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
import tensorflow as tf
#创建一个常量op
m1 = tf.constant([[3,3]]) #两行一列
#创建一个常量op
m2 = tf.constant([[2],[3]]) #一行两列
#创建一个矩阵乘法op,把m1和m2传入
product = tf.matmul(m1,m2)
#输出
print(product)
with tf.Session() as sess:
#调用sess的run方法来执行矩阵乘法op
# run(product)触发了图中3个op
result = sess.run(product)
print(result)
2-3
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
import tensorflow as tf
#变量
x = tf.Variable([1,2])
#定义常量
a = tf.constant([3,3])
#增加一个减法的op
sub=tf.subtract(x,a)
#增加一个加法的op
add = tf.add(x,sub)
#全局变量的初始化
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(sub))
print(sess.run(add))
#创建一个变量初始化为0
state=tf.Variable(0,name='counter')
#创建一个op,作用是使state加1
new_value=tf.add(state,1)
#赋值,后面的给前面的数值,赋值op
update = tf.assign(state,new_value)
#因为用到变量,所以也需要初始化
init = tf.global_variables_initializer()
#定义会话
with tf.Session() as sess:
sess.run(init)
print(sess.run(state))
#定义一个循环
for _ in range(5):
sess.run(update)
print(sess.run(state))
2-4
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
#fetch
import tensorflow as tf
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
add = tf.add(input2, input3)
mul = tf.multiply(input1, add)
with tf.Session() as sess:
result = sess.run([mul, add])
print(result)
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
#fetch
import tensorflow as tf
#Feed
#创建占位符,可以在会话中调用使用,运行时传入
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1,input2)
with tf.Session() as sess:
#Feed的数据以字典的形式传入
print(sess.run(output, feed_dict={input1:[7.], input2:[2.]}))
2-5
#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
#使用numpy生成100个随机的点
x_data = np.random.rand(100)
y_data = x_data*0.1 +0.2 #相当于一条直线
#构造一个线性模型,b,k变量,0. 0. 可以改变例如1.1 ,0.5
b = tf.Variable(0.)
k = tf.Variable(0.)
y = k*x_data + b #k斜率 , b截距
#需要优化斜率和截距接近于样本点
#定义一个二次代价函数,tf.reduce_mean代表求平均值;tf.square代表平方
#y_data代表真实值,y代表预测值 ;y_data-y代表真实值减去预测值=误差
loss = tf.reduce_mean(tf.square(y_data - y))
#定义一个梯度下降法来进行训练的优化器,给一个0.2的优化率
optimizer = tf.train.GradientDescentOptimizer(0.2)
#最小化代价函数,求loss最小,越接近真实值
train = optimizer.minimize(loss)
#前面使用了变量,所以需要变量初始化
init = tf.global_variables_initializer()
print(tf.square(3))
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run([k,b]))