Y1:逆元

1.原理

费马小定理:p为质数,p∤a时,a^(p-1)≡1(mod p)

两边同除a,则inv(a)=a^(p-2)%p

因此,只要用快速幂求出a的p-2次幂即可求出逆元

2.题目

线性求逆元(非严格)

时间限制:1秒        内存限制:128M

题目描述

给定n,p,求1到n所有整数在模p意义下的乘法逆元。

输入描述

两个正整数n,p(1≤n≤3×10​6​​,n<p<20000528),保证p是质数

输出描述

输出n行,第i行代表i在模p意义下的乘法逆元

解题思路

根据取模的性质,我们可以知道inv[a]*inv[b]=inv[a*b],所以我们可以通过ola筛算出质数逆元,在此基础上通过相乘求出合数逆元

AC代码

#include<bits/stdc++.h>
using namespace std;
long long tmp,ans[3000006];
long long n,p,pr[3000006],cnt,st[3000006],inv[3000006],mod;
long long qp(long long a ,long long n){
	long long re=1;
	while(n){
		if(n&1){
			re=(re*a)%mod;
		}
		n>>=1;
		a=(a*a)%mod;
	}
	re%mod;
	return re;
}
void ola(int n){
    st[1]=1;
    inv[1]=1;
    for(int i=2;i<=n;i++){
        if(!st[i]){
            pr[cnt++]=i;
            inv[i]=qp(i,mod-2);
        }
        for(int j=0;j<cnt&&i*pr[j]<=n;j++){
            st[i*pr[j]]=1;
            inv[i*pr[j]]=(inv[i]*inv[pr[j]])%mod;
            if(i%pr[j]==0){
                break;
            }
        }
    }
    
}
int main(){
    cin>>n>>p;
    mod=p;
    ola(n);
    for(int i=1;i<=n;i++){
        cout<<inv[i]<<'\n';
    }
    return 0;
}

T2

线性求逆元2

时间限制:1秒        内存限制:256M

题目描述

给出n个正整数a​i​​,求:

输入描述
第一行一个正整数n(1≤n≤5×10​e6​​)

第二行n个整数a​i​​(1≤a​i​​<p)

解题思路

通过变形,我们推出下列公式:ans=(((inva1k+inva2)k+inva3)k+..)k+invan

所以只要求出a[1]->a[n]的逆元即可

由于数据庞大,我们使用严格线性求逆元

求前缀积s[i]=s[i-1]*a[i]
求前缀积的逆元(此处求sinv[n])sinv[i-1]=sinv[i]*a[i]
原数组逆元inva[i]=sv[i]*s[i-1];

(注意初始化s[0],sinv!!!!!!!!!)

AC代码

#include<bits/stdc++.h>
using namespace std;
long long tmp,ans,n,p,mod=1000000007,a[5000005],s[5000005],sinv[5000005],inva[5000005],k=998244353;
long long qp(long long aa ,long long nn){
	long long re=1;
	while(nn){
		if(nn&1){
			re=(re*aa)%mod;
		}
		nn>>=1;
		aa=(aa*aa)%mod;
	}
	re%mod;
	return re;
}
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    s[0]=1;
    s[1]=a[1];
    for(int i=2;i<=n;i++){
        s[i]=(s[i-1]*a[i])%mod;
    }
    sinv[n]=qp(s[n],mod-2);
    for(int i=n;i>=1;i--){
       sinv[i-1]=sinv[i]*a[i];
       sinv[i-1]%=mod;
       inva[i]=sinv[i]*s[i-1];
       inva[i]%=mod;
    }
    tmp=0;
    for(int i=1;i<=n;i++){
        tmp=(tmp*k%mod+inva[i]);
        tmp%=mod;
    }
    cout<<tmp;
    return 0;
}

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在求得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于求解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要求逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数求出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过求模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要求逆元的整数`a`和模数`m`,并输出结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值