mlp实现mnist手写数据集的分类

本文通过sklearn.datasets加载MNIST手写数据集,并使用train_test_split划分训练集和测试集。实验表明,隐藏层更深、神经元更多的MLP模型在分类任务上具有更高的准确率。此外,介绍了两种评估模型准确率的方法:MLPClassifier的score方法和accuracy_score函数。
摘要由CSDN通过智能技术生成

首先看数据集,使用sklearn.datasets中的mnist手写数据集,先看看数据集。

from sklearn.datasets import load_digits

digits = load_digits()
x_data = digits.data
y_data = digits.target

print(x_data.shape)
print(y_data.shape)

 digits中有1797条数据,每个图像有64(8*8)的维度。将x_data和y_data分为训练集和测试集。

x_train,x_test,y_train,y_test = train_test_split(x_data,y_data)

train_test_spilt()j将x_data,y_data按比例分为训练集和测试集,test_size默认为0.3.

print(x_train.shape)
print(y_train.shape)

用MLPClassifier构造一个mlp模型,改变隐藏层参数,比较不同参数下的准确率。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值