首先看数据集,使用sklearn.datasets中的mnist手写数据集,先看看数据集。
from sklearn.datasets import load_digits
digits = load_digits()
x_data = digits.data
y_data = digits.target
print(x_data.shape)
print(y_data.shape)
digits中有1797条数据,每个图像有64(8*8)的维度。将x_data和y_data分为训练集和测试集。
x_train,x_test,y_train,y_test = train_test_split(x_data,y_data)
train_test_spilt()j将x_data,y_data按比例分为训练集和测试集,test_size默认为0.3.
print(x_train.shape)
print(y_train.shape)
用MLPClassifier构造一个mlp模型,改变隐藏层参数,比较不同参数下的准确率。