Kubeflow实战系列: 利用TFJob运行分布式TensorFlow

本文介绍了如何在阿里云上利用Kubeflow和TFJob进行分布式TensorFlow模型训练,包括Kubernetes资源调度、TFJob定义、代码修改、NAS数据卷的使用以及TensorBoard的部署,简化了数据科学家的分布式训练流程。
摘要由CSDN通过智能技术生成

摘要: TensorFlow作为现在最为流行的深度学习代码库,在数据科学家中间非常流行,特别是可以明显加速训练效率的分布式训练更是杀手级的特性。但是如何真正部署和运行大规模的分布式模型训练,却成了新的挑战。

介绍

本系列将介绍如何在阿里云容器服务上运行Kubeflow, 本文介绍如何使用TfJob运行分布式模型训练。

TensorFlow分布式训练和Kubernetes

TensorFlow作为现在最为流行的深度学习代码库,在数据科学家中间非常流行,特别是可以明显加速训练效率的分布式训练更是杀手级的特性。但是如何真正部署和运行大规模的分布式模型训练,却成了新的挑战。 实际分布式TensorFLow的使用者需要关心3件事情。

  1. 寻找足够运行训练的资源,通常一个分布式训练需要若干数量的worker(运算服务器)和ps(参数服务器),而这些运算成员都需要使用计算资源。
  2. 安装和配置支撑程序运算的软件和应用
  3. 根据分布式TensorFlow的设计,需要配置ClusterSpec。这个json格式的ClusterSpec是用来描述整个分布式训练集群的架构,比如需要使用两个worker和ps,ClusterSpec应该长成下面的样子,并且分布式训练中每个成员都需要利用这个ClusterSpec初始化tf.train.ClusterSpec对象,建立集群内部通信
cluster = tf.train.ClusterSpec({"worker": ["<VM_1>:2222",
                                           "<VM_2>:2222"],
                                "ps": ["<IP_VM_1>:2223",
                                       "<IP_VM_2>:2223"]})

其中第一件事情是Kubernetes资源调度非常擅长的事情,无论CPU和GPU调度,都是直接可以使用;而第二件事情是Docker擅长的,固化和可重复的操作保存到容器镜像。而自动化的构建ClusterSpecTFJob解决的问题,让用户通过简单的集中式配置,完成TensorFlow分布式集群拓扑的构建。

应该说烦恼了数据科学家很久的分布式训练问题,通过Kubernetes+TFJob的方案可以得到比较好的解决。

利用Kubernetes和TFJob部署分布式训练

  1. 修改TensorFlow分布式训练代码

之前在阿里云上小试TFJob一文中已经介绍了TFJob的定义,这里就不再赘述了。可以知道TFJob里有的角色类型为MASTERWORKER 和 PS

举个现实的例子,假设从事分布式训练的TFJob叫做distributed-mnist, 其中节点有1个MASTER, 2个WORKERS和2个PS,ClusterSpec对应的格式如下所示:

{  
    "master":[  
        "distributed-mnist-master-0:2222"
    ],
    "ps":[  
        "distributed-mnist-ps-0:2222",
        "distributed-mnist-ps-1:2222"
    ],
    "worker":[  
        "distributed-mnist-worker-0:2222",
        "distributed-mnist-worker-1:2222"
    ]
}

tf_operator的工作就是创建对应的5个Pod, 并且将环境变量TF_CONFIG传入到每个Pod中,TF_CONFIG包含三部分的内容&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值