基于JDK8的HashMap解析

  • 此文章缘由第一次面试阿里。
  • 20180926:之前匆忙整理出关键知识,发现逻辑有些混乱,这次干脆重新整理一遍。

概述

在JDK6、7中,HashMap使用的是数组+链表实现的,在JDK8中,使用的是数组+链表+红黑树实现。这种转变是为了解决当散列到一个桶内的元素过多时,提高查找效率。
JDK8 HashMao结构
图片来源:http://www.importnew.com/28263.html

关键源码解析

类继承关系

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable 

HashMap继承了AbstractMap,实现了Map、Cloneable、Serializable接口。

类成员变量

    // 用于序列化的序列号信息
    private static final long serialVersionUID = 362498820763181265L;	
    //默认初始容量为16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16	
    //最大容量为2³°
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //默认的负载因子为0.75
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //当桶上的节点数大于8的时候会转换成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    //当桶上的节点数小于6的时候会从树转为链表
    static final int UNTREEIFY_THRESHOLD = 6;
    //树化的最小表容量。如果容量小于64,即使某个桶的节点数目大于8,也不会进行树化,而是进行resize()
    static final int MIN_TREEIFY_CAPACITY = 64;
    //存放节点的数组,大小总是2的整数次幂,数组的每个索引位置又称为桶
    transient Node<K,V>[] table;
    //缓存了HashMap中节点的set集合
    transient Set<Map.Entry<K,V>> entrySet;
    //存放的节点数量
    transient int size;
    //记录结构上修改的次数,会用于fail-fast(快速报错,是指当一个线程在使用iterator进行迭代,
    //有其他线程进行了结构性修改,那么这个迭代线程会抛出并发修改的异常ConcurrentModificationException
    //所谓结构性修改,是对原有容器的size造成影响的操作,如remove、add、clear操作等 )
    transient int modCount;
    //临界值,当实际节点数目超过临界值(容量*负载因子),需要进行扩容
    int threshold;
    //负载因子=实际节点数/容量
    final float loadFactor;

构造函数

    //构造一个空的HashMap,初始化容量为16,初始化负载因子为0.75
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
  
    //以指定的容量初始化一个空的HashMap    
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }	
	
    //以指定的容量和负载因子来初始化一个空的HashMap
    public HashMap(int initialCapacity, float loadFactor) {
    	//初始容量需要大于0
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
    	//当指定的初始容量大于最大值,则将初始容量置为最大值
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
		//填充因子不能小于或等于0,不能为非数字
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
    	//通过tableSizeFor(cap)计算第一个不小于initialCapacity的2的整数次幂作为初始容量,
    	//将其先保存在threshold里,当put时判断数组为空会调用resize分配内存,并重新计算正确的threshold
        this.threshold = tableSizeFor(initialCapacity);
    }

    //根据指定的Map来初始化HashMap,容量和负载因子都使用默认值
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

节点类的实现

	static class Node<K,V> implements Map.Entry<K,V> {
        //对key进行hash()计算后得到的值
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
        //省略类中的方法
        ...
	}

hash实现

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

Node中记录的hash值就是通过这个方法获取的,通过使key的hashCode()高16位不变,低16位与高16位做“异或(XOR)”作为最终hash值。
在这里插入图片描述
图片来源:https://blog.csdn.net/qazwyc/article/details/76686915

resize实现

//初始化table或者将table的容量扩充为当前的2倍
final Node<K,V>[] resize() {
        //保存当前table
        Node<K,V>[] oldTab = table;
        //保存当前容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //保存当前阈值
        int oldThr = threshold;
        int newCap, newThr = 0;
        //如果当前table容量大于0,即已经初始化过
        if (oldCap > 0) {
            //超过最大容量不再扩容,只设置阈值为最大整型
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //容量翻倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
              	//阈值翻倍
                newThr = oldThr << 1; // double threshold
        }
        //使用initialCapacity的构造函数的时候,容量信息是保存在threshold中的
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
       	//使用不带参数的构造函数的情况
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //初始化情况下,获取真正的阈值来覆盖之前保存在threshold中的初始容量
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        	//新的table
      		Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
      	//将table置换为newTab
        table = newTab;
        //为新的table复制节点
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //将节点保存在e中
                if ((e = oldTab[j]) != null) {
                    //手动为oldTab置null,让垃圾回收能够识别到该容器已经废弃
                    oldTab[j] = null;
                    //桶中只有一个节点
                    if (e.next == null)
                    	//对该节点重新散列
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //头指针和尾指针
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        //将同一桶中的元素根据(e.hash & oldCap)是否为0,
                        //分割成两个不同的链表,完成rehash
                        do {
                            next = e.next;
                            //和put操作的时候不同,这里直接使用容量来做按位与,因为容量是2的整数次幂,所以
                            //低位都是0,也就是说只有当节点的hash值与原容量的最高位对应的位置都为1的时候,
                            //该节点会被散列到数组新开辟出来的范围上
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //不在oldCap容量内,进行取模操作的hash节点,需要重新散列,这里先将
                            //这些节点保存到hi的队列中
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            //hi队列中保存的节点的新散列即为原索引+oldCap
                            //这里开始的时候想差了,我自己举的oldCap=8,然后存在hash为9和17的两个节点
                            //9的新索引为原索引+原容量可以理解,但是17怎么变成9了而不是1呢?
                            //后来突然想通了,如果是17的话根本就进不到这个代码,也就是不可能变为9
                            //因为(e.hash & oldCap) == 0这个判断是为true的,17保留了原来的索引,也就是1              
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

针对(e.hash & oldCap) == 0来划分lo链表和hi链表进行进一步说明:
当原来的容量为8时,散列的桶的索引为:
在这里插入图片描述
当进入(e.hash & oldCap) == 0的判断时:
在这里插入图片描述
所以,9是会进入到hi的链表中,而17依然在lo的链表中

put实现

put的大致过程如下:

    public V put(K key, V value) {
    	//对key做hash
        return putVal(hash(key), key, value, false, true);
    }
    
    public V putIfAbsent(K key, V value) {
    	//对key做hash
        return putVal(hash(key), key, value, true, true);
    }
    //参数onlyIfAbsent为true时,只有不存在该key时才进行put操作
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //第一次put的时候进行初始化操作,这里参看resize()中的过程
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //散列的位置为(n-1)&hash,判断此处的桶是否为null
        if ((p = tab[i = (n - 1) & hash]) == null)
            //如果为null,就将新节点插入
            tab[i] = newNode(hash, key, value, null);
        //如果该桶内已经有数据
        else {
            Node<K,V> e; K k;
            //与桶内第一个节点的hash相等,key相等
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //如果是,保存这个节点
                e = p;
            //如果是红黑树节点
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                	//到达链表尾部
                    if ((e = p.next) == null) {
                        //在尾部插入新节点
                        p.next = newNode(hash, key, value, null);
                        //如果达到树化的阈值,转化为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //如果已经存在相同的key了,就不需要遍历到链表的尾部了
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
           //如果存在相同的key,上面的循环不会循环到链表尾部,(e=p.next)!=null
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //实际节点数大于阈值,则进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

get实现

     public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //比较桶中的第一个节点
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //桶中不止一个节点
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

小结

  1. 在存在hash冲突时,JDK7和JDK8的put操作插入的位置有所不同:JDK7会插在桶的第一个节点,即链表的头部;而在JDK8中会插在桶的最后一个元素,即链表的尾部

  2. key的不可变。通常使用String对象,或者封装基本类型来作为HashMap的key是合适的,因为它们都是final的,且重写了hashCode和equals方法。key的不可变是必要的,如果在存取过程中key值发生改变,且计算出的hashCode发生了改变,那么就无法找到你期望得到的对象。

  3. put操作时,JDK8中是先插入节点,然后如果判断超出阈值,那么再进行扩容;JDK6、7中是先扩容再插入节点。

  4. 重写hashCode和equals方法是很重要的。良好的hashCode方法能在对象不同的情况下返回不同的值,减少了碰撞的几率,能够提高HashMap的效率(因为这样就完全等于在数组中查找了)。equals方法则规定了进入桶后,在链表中进行比较的规则。再次强调下重写equals()方法后重写hashCode()的必要性:在Object类中,hashCode()方法是一个本地native方法,返回的是对象引用中存储的对象的内存地址,而equals方法是利用==来比较的也是对象的内存地址,此时如果没有对它们进行重写,它们之间是相互匹配的。
    equals()和hashCode()之间存在如下关系

    1. 当obj1.equals(obj2)为true时,obj1.hashCode() == obj2.hashCode()必须为true ;
    2. 当obj1.hashCode() == obj2.hashCode()为false时,obj1.equals(obj2)必须为false;

    假设现在对一个Person类的equals()方法进行了重写(比较int类型age),equals()比较的不再是地址,此时hashCode()方法就不满足上述关系了,那么就可能存在两个Person的age相同,equals()返回true,但是由于两个对象地址不同,hashCode()不相等,这是不满足约定的。
    如果是在hashMap中,存在一个key,假设是Person实例p,它重写了equals(),此时将这个(key,value)放入hashMap中;然后new一个新的Person对象p2,它满足p.equals(p2)==true,但是由于hashCode()方法未被重写,在调用hashMap的get方法是,取得p2的哈希值与p不一样,也就是p2散列到了与p不同的桶中,在这种情况下就取不出想要的value值了。

  5. 关于hashMap的容量为什么是2的整数次幂,我总结为如下3条:

    1. 因为threshold=loadFactor*capacity,大多数情况下,loadFactor不进行修改,即默认值0.75,也就是3/4,如果容量为2的整数次幂,这样在计算阈值的时候会比较方便。
    2. 在进行put操作时,对Node进行散列,获取桶下标的方法是:p = tab[i = (n - 1) & hash](n代表hashMap的容量),因为n是2的整数次幂,减一后就全是1了,例如(8)2=1000,减1后为111,这样再做与操作实际上等同于取余操作,但是效率比%高很多(20190401更新:试了下,其实也没高出很多,只有很小的提高,重复Integer.MAX次进行计算,也不过才快出了几毫秒)。
    3. 在进行resize的时候,需要对hashMap中的Node进行重新散列,这里分为两个链表,lo和hi,区分Node重新散列到lo还是hi的条件是(e.hash & oldCap) == 0,注意和put操作时候的散列的区别是这里没有对容量减1,这其实相当于扩容2倍后,即容量值左移1位,如果进行&计算依然为0,说明要么这个Node的hash值本身在lo中,要么扩容后(左移1位后)依然无法散列到新的空间上去。

参考文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值