3675: [Apio2014]序列分割
bzoj题目链接
洛谷题目链接
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 4138 Solved: 1613
Description
小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
Input
输入第一行包含两个整数n,k(k+1≤n)。
第二行包含n个非负整数a1,a2,…,an(0≤ai≤10^4),表示一开始小H得到的序列。
Output
输出第一行包含一个整数,为小H可以得到的最大分数。
Sample Input
7 3
4 1 3 4 0 2 3
Sample Output
108
HINT
【样例说明】
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置
将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数
字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+ 3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个
数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)= 20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
【数据规模与评分】
:数据满足2≤n≤100000,1≤k≤min(n -1,200)。
Source
题解
定义 F[i][p] 表示前 i 个分了 p 次的最优解(其中第 p+1 次应从 i 和 i+1 之间分),F[i][p] = min( F[j][p-1] + s[j] * ( s[i] - s[j] ) )。
此处详解,懂的跳过。对于这个定义,分割的顺序是不影响答案的,感性地理解感觉好像有问题,如果有人不理解或者懒于动笔,那么这里理性证明一下(主要是我一开始也不理解)
我们假设当前这段序列是从 L 到 R,其中的 i 点和 j 点都要切 且 i>j,定义 s[i]=∑ij=1a[i] s [ i ] = ∑ j = 1 i a [ i ] 那么,先切 i 和先切 j 的最优解分别表示为
(s[i]−s[L−1])∗(s[R]−s[i−1])+(s[j]−s[L−1])∗(s[i]−s[j−1]) ( s [ i ] − s [ L − 1 ] ) ∗ ( s [ R ] − s [ i − 1 ] ) + ( s [ j ] − s [ L − 1 ] ) ∗ ( s [ i ] − s [ j − 1 ] ) 和 (s[j]−s[L−1])∗(s[R]−s[j−1])+(s[i]−s[j−1])∗(s[R]−s[i−1]) ( s [ j ] − s [ L − 1 ] ) ∗ ( s [ R ] − s [ j − 1 ] ) + ( s [ i ] − s [ j − 1 ] ) ∗ ( s [ R ] − s [ i − 1 ] )
我们把两个作差
等于 (s[R]−s[i−1])∗[(s[i]−s[L−1])−(s[i]−s[j−1])]+(s[j]−s[L−1])∗[(s[i]−s[j−1])−(s[i]−s[j−1])] ( s [ R ] − s [ i − 1 ] ) ∗ [ ( s [ i ] − s [ L − 1 ] ) − ( s [ i ] − s [ j − 1 ] ) ] + ( s [ j ] − s [ L − 1 ] ) ∗ [ ( s [ i ] − s [ j − 1 ] ) − ( s [ i ] − s [ j − 1 ] ) ]
等于 (s[R]−s[i−1])∗(s[j−1]−s[L−1])+(s[j]−s[L−1])∗(s[i−1]−s[j−1]) ( s [ R ] − s [ i − 1 ] ) ∗ ( s [ j − 1 ] − s [ L − 1 ] ) + ( s [ j ] − s [ L − 1 ] ) ∗ ( s [ i − 1 ] − s [ j − 1 ] )
等于 0……
也就是对于任意区间里的任意两个必切点,无论安照什么顺序都不影响答案……
所以你还敢相信你的感觉吗……
空间可以滚动数组。
时间可进行斜率优化。
考虑 j<k,且 j 更适合当最优解的情况,f[j] + s[i]*s[j] - s[j]^2 >f[k] + s[i]*s[k] - s[k]^2
即 g(j,k) = (f[j] - f[k] - s[j]^2 + s[k]^2)/(s[k] - s[j]) < s[i]
当 g(i,j) <= g(j,k) 时推队尾。
详细的斜率DP推导可以看我之前的几篇博客。
另一个解法
可以用二分+DP来解,这里就不详细介绍了。
我们如果不考虑取的个数,那么可能超过 k 次,我们只需每次减去一个权值 M,使得刚好取到 k 次就是最优解了,这个 M 可以用二分枚举。
洛谷里还要输出顺序,斜杠的打掉就是洛谷的那道了。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=1e5+5;
int n,k,q[maxn],til,hea,p;//,lst[maxn][205];
LL f[maxn][2],s[maxn];
int read()
{
int ret=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
return ret*f;
}
double xie(int j,int k)
{
LL x=s[k]-s[j];
if (x==0) return -1e18;
return (f[j][p^1]-f[k][p^1]-s[j]*s[j]+s[k]*s[k])*1.0/x;
}
int main()
{
n=read();k=read();
for (int i=1;i<=n;i++) s[i]=s[i-1]+read();
for (int t=1;t<=k;t++)
{
memset(q,0,sizeof q);hea=0;til=1;p=t&1;
for (int i=1,j;i<=n;i++)
{
while (hea<til&&xie(q[hea+1],q[hea])<s[i]) hea++;
j=q[hea];f[i][p]=f[j][p^1]+s[j]*(s[i]-s[j]);//lst[i][t]=j;
while (hea<til&&xie(i,q[til])<=xie(q[til],q[til-1])) til--;
q[++til]=i;
}
}
printf("%lld\n",f[n][k&1]);
// til=0;
// for (int i=k,x=n;i>=1;i--) q[++til]=(x=lst[x][i]);
// while (til--) printf("%d ",q[til+1]);
return 0;
}