SPP-net
SPP-net 网络结构
做法
在最后的卷积层和全连接层之间加入SPP层。
具体做法是,在conv5层得到的特征图是256层,每层都做一次spatial pyramid pooling。先把每个特征图分割成多个不同尺寸的网格,比如网格分别为
4
∗
4
、
2
∗
2
、
1
∗
1
4 * 4、2 * 2、1 * 1
4∗4、2∗2、1∗1,然后每个网格做max pooling,这样256层特征图就形成了
16
∗
256
,
4
∗
256
,
1
∗
256
16*256,4*256,1*256
16∗256,4∗256,1∗256 维特征,他们连起来就形成了一个固定长度的特征向量,将这个向量输入到后面的全连接层。
R-CNN 与 SPP-NET
SPPNet不同于R-CNN的第一个地方是先整张图片进行卷积运算,然后得到一个feature map(特征图)。然后每个候选区域与feature map映射,得到每个候选区域的特征向量。因为这些特征向量的大小都是不一样的,因此添加一个SSP(spatial pyramid pooling)层。SSP层可以接收任何大小的特征图输入,但是会输出固定大小的特征向量,然后再传递到全连接层。
————————————————
版权声明:本文为CSDN博主「Yi_Kong」的原创文章,遵循CC 4.0
BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42768004/article/details/105207949
.
图像目标检测二——SPP-net - 简书
https://www.jianshu.com/p/fa9a5929d2e7
.
SPPNet网络结构详解_weixin_42768004的博客-CSDN博客_spp网络结构
https://blog.csdn.net/weixin_42768004/article/details/105207949
与全连接层的区别,全连接层要固定输入大小,如何理解
SPP,YOLO了解吗?
参考答案
参考回答:
SPP-Net简介:
SPP-Net主要改进有下面两个:
1).共享卷积计算、2).空间金字塔池化
在SPP-Net中同样由这几个部分组成:
ss算法、CNN网络、SVM分类器、bounding box
ss算法的区域建议框同样在原图上生成,但是却在Conv5上提取,当然由于尺寸的变化,在Conv5层上提取时要经过尺度变换,这是它R-CNN最大的不同,也是SPP-Net能够大幅缩短时长的原因。因为它充分利用了卷积计算,也就是每张图片只卷积一次,但是这种改进带来了一个新的问题,由于ss算法生成的推荐框尺度是不一致的,所以在cov5上提取到的特征尺度也是不一致的,这样是没有办法做全尺寸卷积的(Alexnet)。
所以SPP-Net需要一种算法,这种算法能够把不一致的输入产生统一的输出,这就SPP,即空间金字塔池化,由它替换R-CNN中的pooling层,除此之外,它和R-CNN就一样了。
YOLO详解:
YOLO的名字You only look once正是自身特点的高度概括。YOLO的核心思想在于将目标检测作为回归问题解决 ,YOLO首先将图片划分成SxS个区域,注意这个区域的概念不同于上文提及将图片划分成N个区域扔进detector这里的区域不同。上文提及的区域是真的将图片进行剪裁,或者说把图片的某个局部的像素扔进detector,而这里的划分区域,只的是逻辑上的划分。
(99+条未读通知) SPP,YOLO了解吗?_算法/机器学习校招面试题目合集_牛客网
https://www.nowcoder.com/ta/review-ml/review?page=168
思考
目标检测的两大信息,抽象语义信息与空间位置信息。
在分类网络中,只需要考虑抽象语义信息,将物体分类正确就可以了。
而在目标检测中,不仅需要考虑抽象语义信息,空间位置信息。
抽象语义信息主要在网络的后层,后层上只有一个点的信息,对于物体的整体的轮廓信息是几乎没有的
空间位置信息主要在网络的前层。前层主要是对图像的一个颜色、纹理、边缘等信息进行提取,因此保留了位置信息
卷积特征其实保存了空间位置信息?
空间金字塔池化
空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)_qq_42052229的博客-CSDN博客_keras实现
空间金字塔池化
https://blog.csdn.net/qq_42052229/article/details/90446073
空间金字塔池化(Spatial Pyramid Pooling, SPP)_qqliuzihan的博客-CSDN博客_空间金字塔池化
https://blog.csdn.net/qqliuzihan/article/details/81217766
SPP空间金字塔池化(Spatial Pyramid Pooling)_juronghui的博客-CSDN博客_空间金字塔池化
https://blog.csdn.net/juronghui/article/details/78648806?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-1
SPP-net原理解读 - SuperVan - 博客园
https://www.cnblogs.com/chaofn/p/9305374.html
空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)_aiwanghuan5017的博客-CSDN博客_spatial pyramid pooling 的代码
https://blog.csdn.net/aiwanghuan5017/article/details/102147526
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD - 云+社区 - 腾讯云
https://cloud.tencent.com/developer/news/281788