pytorch
文章平均质量分 58
大虾飞哥哥
这个作者很懒,什么都没留下…
展开
-
pytorch设置随机种子
pytorch设置随机种子 - 保证复现模型所有的训练过程在使用 PyTorch 时,如果希望通过设置随机数种子,在 GPU 或 CPU 上固定每一次的训练结果,则需要在程序执行的开始处添加以下代码:def seed_everything(): ''' 设置整个开发环境的seed :param seed: :param device: :return: ''' import os import random import nump原创 2022-05-27 10:59:18 · 3788 阅读 · 0 评论 -
pytorch使用-nn.RNN
pytorch使用-nn.RNN一、nn.RNN一、nn.RNNnn.RNN(input_size: int, hidden_size: int, num_layers: int = 1, bias: bool = True, batch_first: bool = False, dropout: float = 0., bidirectional: bool = False, proj_size: int = 0, device=None, dtype=No原创 2022-04-07 16:56:47 · 4344 阅读 · 1 评论 -
pytorch使用-Lenet实现
pytorch使用-Lenet实现一、Lenet实现网络图二、创建网络三、定义损失函数四、定义优化器一、Lenet实现网络图二、创建网络import torch.nn as nnimport torch.nn.functional as F# TODO: 构建神经网络class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.原创 2022-04-03 17:26:24 · 1614 阅读 · 0 评论 -
pytorch使用-自动微分
pytorch使用-自动微分一、自动微分二、Tensor自动微分三、backward 反向传播一、自动微分在整个Pytorch框架中,所有的神经网络本质上都是一个autograd package(自动求导工具包),autograd package提供了一个对Tensors上所有的操作进行自动微分的功能.以前的pytorch使用Variable来作为自动求导的类型。但是较新版本将tensor和variable合并了,Tensor的数据结构如下:Tensor 主要包含三个属性:.data:保存T原创 2022-04-03 11:33:26 · 2674 阅读 · 0 评论 -
pytorch使用-tensor基本操作
pytorch使用-tensor基本操作一、tensor加减乘除二、tensor矩阵运算四、tensor切片操作五、tensor改变形状六、tensor 和 numpy.array相互转换七、tensor 转到GPU上一、tensor加减乘除加法操作import torchx = torch.randn(2, 3)y = torch.randn(2, 3)z = x + yprint(z)z = torch.add(x, y)print(z)y.add_(x)print(y)原创 2022-04-02 22:08:06 · 4260 阅读 · 0 评论 -
pytorch使用-tensor创建
pytorch使用-tensor创建一、导入包二、tensor创建方法三、tensor初始化和随机初始化四、tensor方法一、导入包import torch二、tensor创建方法x = torch.empty(2, 3)print(x)x = torch.Tensor(2, 3)print(x)x = torch.zeros(2, 3, dtype=torch.long)print(x)x = torch.ones(2, 3, dtype=torch.long)print原创 2022-04-02 21:07:07 · 1681 阅读 · 0 评论