在训练过程中,可以通过tensorboard来查看运行的图以及误差等数据的变化过程,以下介绍tensorboard的几个模块。
(一)简单的结构说明
(1)整个大框架说明
如图1所示,tensorboard的结构包括:inputs,layer1,layer2,loss,train这几个大框架,这几个框架是在同一层次的。
with tf.name_scope(layer_name): #定义层
with tf.name_scope('inputs'): #定义输入
with tf.name_scope('loss'): #定义损失
with tf.name_scope('train'): #定义训练
writer = tf.summary.FileWriter("Desktop/",sess.graph) #选定可视化存储目录
图1 整个网络的大框架结构图
(2)每个layer的细则
如图2所示,tensorboard的每一层里面包含:weight,biases,Wx_plus_b这几个节点需要设置,
with tf.name_scope(layer_name): #层(下面为每层包含的元素)
with tf.name_scope('weights'): #权值
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
tf.summary.histogram(layer_name+"/weights",Weights) #变量
with tf.name_scope('biases'): #偏置
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
tf.summary.histogram(layer_name+"/biases",biases) #常量
with tf.name_scope('Wx_plus_b'): #预测值
Wx_plus_b = tf.matmul(inputs,Weights)+biases
tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
outputs = activation_function(Wx_plus_b) #输出
tf.summary.histogram(layer_name+"/outputs",outputs)
注意:所有操作之后,必须要merge所有设置的kashima节点并且给定一个放置生成图的文件夹。
#合并到Summary中
merged = tf.summary.merge_all()
#选定可视化存储目录
writer = tf.summary.FileWriter("Desktop/",sess.graph)
需要查看生成结果,则需要在终端输入:
tensorboard --logdir="Desktop/"
得到一个网址,打开网址即可查看。
图2 网络层的细则图
(3)网络全图
如图3所示,我们可以看到网络的每个模块包含哪些部分以及数据流向:
import tensorflow as tf
import numpy as np
sess = tf.Session()
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): #activation_function=None默认线性函数
layer_name="layer%s" % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size,out_size])) #变量
tf.summary.histogram(layer_name+"/weights",Weights) #可视化变量
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1,out_size])+0.1) #常量
tf.summary.histogram(layer_name+"/biases",biases) #可视化常量
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.matmul(inputs,Weights)+biases
tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)#可视化
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+"/outputs",outputs) #可视化
return outputs
#创建数据x_data,y_data
x_data = np.linspace(-1,1,300)[:,np.newaxis] #[-1,1]区间,300个单位,np.newaxis增加维度
noise = np.random.normal(0,0.05,x_data.shape) #噪点
y_data = np.square(x_data)-0.5+noise
with tf.name_scope('inputs'): #结构化
xs = tf.placeholder(tf.float32,[None,1],name='x_input')
ys = tf.placeholder(tf.float32,[None,1],name='y_input')
#三层神经,输入层(1个神经元),隐藏层(10神经元),输出层(1个神经元)
l1 = add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu) #隐藏层
prediction = add_layer(l1,10,1,n_layer=2,activation_function=None) #输出层
#predition值与y_data差别
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1])) #square()平方,sum()求和,mean()平均值
tf.summary.scalar('loss',loss) #可视化观看常量
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #0.1学习效率,minimize(loss)减小loss误差
init = tf.global_variables_initializer()
#合并到Summary中
merged = tf.summary.merge_all()
#选定可视化存储目录
writer = tf.summary.FileWriter("Desktop/",sess.graph)
sess.run(init) #先执行init
#训练1k次
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #merged也是需要run的
writer.add_summary(result,i) #result是summary类型的,需要放入writer中,i步数(x轴)
图3 网络结构细则图
(二)查看loss
如图4所示为网址打开之后的菜单,点击‘SCALARS’即可查看loss,点击‘GRAPHS’即可查看网络结构图
图4 tensorboard菜单图
如图5所示为loss随着迭代的变化图,可以看出随着训练过程进行,误差越来越小。
图5 loss数据变化图