快速沃尔什变换(FWT)讲解 解决集合卷积的方法

由于某次CSDN更新,文章样式已经丢失,大量公式无法正常显示,本博客也不再维护。

请到快速沃尔什变换FWT查看,有更加完整的公式讲解。

 

能看到这篇博客的人,一定知道FWT是干什么的。(什么?你不知道?)
没事,这里有picks讲FWT的一篇博客。先点进去看一看。
如果你看懂了,那么恭喜你。如果你跟我一样看不懂,那么请继续往下看。

这里的A和B都是什么呢?其实它们是一个多维的向量(如果你不知道向量是什么,就把它当成数组),下标从0开始。
其中,

A=<a0,a1,...,a2k−1>
B=<b0,b1,...,b2k−1>
C=A@B

这里我们定义
A±B=<ab0,ab1,...,a2k−1±b2k−1>即对应位相加(减)
AB=<a0∗b0,a1∗b1,...,a2k−1∗b2k−1>即对应位相乘
A@B(实在找不到靠谱的符号了。。)为A和B做卷积之后得到的结果,也是一个和原来大小一样的向量。

注意到FWT做的是二进制上的位运算,所以一定要把A和B补到2的整次幂次(即不足的地方填上0)。

我们要构造一个变换tf,使得tf(A)∗tf(B)=tf(C)。这个变换的对象是一个大小为2k的向量,变换出来的结果也是一个大小为2k的向量。

就以异或举例。picks告诉我们

tf(A)=(tf(A0)+tf(A1),tf(A0)−tf(A1))
其中A0=<a0,a1,...,a2k−1−1>,A1=<a2k−1,a2k−1+1,...,a2k−1>

即把A中的下标按照二进制最高位为0或1分成前后两部分(前面的为A0,后面的为A1),分治下去做。

分治之后得到tf(A0)和tf(A1)。然后tf(A)的前半部分(即[0,2k−1−1])为tf(A0)+tf(A1),后半部分(即[2k−1,2k−1])为tf(A0)−tf(A1)。(其实就是已知两个向量,把两个向量做加减运算,加的那个结果填到前一半中,减的那个结果填到后一半中)。

然而,这为什么是对的?
接下来我们来证明它是对的。

我要事先说明(注意不是证明)一个引理:tf(A+B)=tf(A)+tf(B)。这个东西看上去挺直观的(一点都不直观好吗。。)。这个东西可以用数学归纳法证。这里略过。。。(有时间的时候再补上)

我们看k=1的时候。
根据定义,有
tf(A)=<a0+a1,a0−a1>
tf(B)=<b0+b1,b0−b1>
tf(C)=<c0+c1,c0−c1>
c0=a0∗b0+a1∗b1,c1=a0∗b1+a1∗b0
自己代代看,反正代出来很神奇的的发现tf(A)∗tf(B)=tf(C)

接下来使用数学归纳法。假设对于大小都为2k(kN∗)的向量AB,满足C=A@B,并且tf(A)∗tf(B)=tf(C)。
考虑当大小为2k+1的情况。我们要证明在这种情况下,tf(A)∗tf(B)=tf(C)。

根据定义,有
tf(A)=(tf(A0)+tf(A1),tf(A0)−tf(A1))
tf(B)=(tf(B0)+tf(B1),tf(B0)−tf(B1))
tf(A)∗tf(B)=([tf(A0)+tf(A1)]∗[tf(B0)+tf(B1)],[tf(A0)−tf(A1)]∗[tf(B0)−tf(B1)])
暴力把式子拆开,有
tf(A)∗tf(B)=
(tf(A0)∗tf(B0)+tf(A0)∗tf(B1)+tf(A1)∗tf(B0)+tf(A1)∗tf(B1),
tf(A0)∗tf(B0)+tf(A1)∗tf(B1)−tf(A0)∗tf(B1)−tf(A1)∗tf(B0))
注意到这里的A0,A1,B0,B1都是大小为2k的向量,符合归纳的基础。于是,
tf(A)∗tf(B)=
(tf(A0@B0)+tf(A0@B1)+tf(A1@B0)+tf(A1@B1),
tf(A0@B0)+tf(A1@B1)−tf(A0@B1)−tf(A1@B0))

由于异或每一位是独立,而这里如果我们把C按照最高位为0或1分成两部分,最高位的异或和其它位不相关。
于是有

C=(C0,C1)=(A0@B0+A1@B1,A0@B1+A1@B0)
要证的等式右边=tf(C)=tf(C0,C1)
=tf(A0@B0+A1@B1,A0@B1+A1@B0)
=(tf(A0@B0+A1@B1)+tf(A0@B1+A1@B0),
tf(A0@B0+A1@B1)−tf(A0@B1+A1@B0))
=(tf(A0@B0)+tf(A1@B1)+tf(A0@B1)+tf(A1@B0),
tf(A0@B0)+tf(A1@B1)−tf(A0@B1)−tf(A1@B0))=tf(A)∗tf(B)=左边
(抱歉我不会排版。式子长得比较丑没关系,看得懂就好)
至此,证毕。

然而这只是一个tf,还有一个逆变换utf。这个逆变换的正确性可以用同样的方法证明,即先看k=1的情况,然后一步一步用数归推上去。
证明方法比较简单(真的很简单),这里略过。

至于其它位运算,其证明方法与异或一致,这里不赘述。

说了这么多,其实这个证明并没有什么卵用(只是使得自己相信它是对的)。。大家还是背代码吧。。。

 

模板:

 

void FWT(int a[],int n)
{
    for(int d=1;d<n;d<<=1)
        for(int m=d<<1,i=0;i<n;i+=m)
            for(int j=0;j<d;j++)
            {
                int x=a[i+j],y=a[i+j+d];
                a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
                //xor:a[i+j]=x+y,a[i+j+d]=x-y;
                //and:a[i+j]=x+y;
                //or:a[i+j+d]=x+y;
            }
}

void UFWT(int a[],int n)
{
    for(int d=1;d<n;d<<=1)
        for(int m=d<<1,i=0;i<n;i+=m)
            for(int j=0;j<d;j++)
            {
                int x=a[i+j],y=a[i+j+d];
                a[i+j]=1LL*(x+y)*rev%mod,a[i+j+d]=(1LL*(x-y)*rev%mod+mod)%mod;
                //xor:a[i+j]=(x+y)/2,a[i+j+d]=(x-y)/2;
                //and:a[i+j]=x-y;
                //or:a[i+j+d]=y-x;
            }
}
void solve(int a[],int b[],int n)
{
    FWT(a,n);
    FWT(b,n);
    for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i]%mod;
    UFWT(a,n);
}

 

 

 

 

 

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值