快速沃尔什变换(FWT)讲解 解决集合卷积的方法

能看到这篇博客的人,一定知道FWT是干什么的。(什么?你不知道?)
没事,这里有picks讲FWT的一篇博客。先点进去看一看。
如果你看懂了,那么恭喜你。如果你跟我一样看不懂,那么请继续往下看。

这里的A和B都是什么呢?其实它们是一个多维的向量(如果你不知道向量是什么,就把它当成数组),下标从0开始。
其中,

A=<a0,a1,...,a2k1>
B=<b0,b1,...,b2k1>
C=A@B

这里我们定义
A±B=<a0±b0,a1±b1,...,a2k1±b2k1>即对应位相加(减)
AB=<a0b0,a1b1,...,a2k1b2k1>即对应位相乘
A@B(实在找不到靠谱的符号了。。)为A和B做卷积之后得到的结果,也是一个和原来大小一样的向量。

注意到FWT做的是二进制上的位运算,所以一定要把A和B补到2的整次幂次(即不足的地方填上0)。

我们要构造一个变换tf,使得tf(A)tf(B)=tf(C)。这个变换的对象是一个大小为2k的向量,变换出来的结果也是一个大小为2k的向量。

就以异或举例。picks告诉我们

tf(A)=(tf(A0)+tf(A1),tf(A0)tf(A1))
A0=<a0,a1,...,a2k11>,A1=<a2k1,a2k1+1,...,a2k1>

即把A中的下标按照二进制最高位为0或1分成前后两部分(前面的为A0,后面的为A1),分治下去做。

分治之后得到tf(A0)tf(A1)。然后tf(A)的前半部分(即[0,2k11])为tf(A0)+tf(A1),后半部分(即[2k1,2k1])为tf(A0)tf(A1)。(其实就是已知两个向量,把两个向量做加减运算,加的那个结果填到前一半中,减的那个结果填到后一半中)。

然而,这为什么是对的?
接下来我们来证明它是对的。

我要事先说明(注意不是证明)一个引理:tf(A+B)=tf(A)+tf(B)。这个东西看上去挺直观的(一点都不直观好吗。。)。这个东西可以用数学归纳法证。这里略过。。。(有时间的时候再补上)

我们看k=1的时候。
根据定义,有
tf(A)=<a0+a1,a0a1>
tf(B)=<b0+b1,b0b1>
tf(C)=<c0+c1,c0c1>
c0=a0b0+a1b1,c1=a0b1+a1b0
自己代代看,反正代出来很神奇的的发现tf(A)tf(B)=tf(C)

接下来使用数学归纳法。假设对于大小都为2k(kN)的向量AB,满足C=A@Btf(A)tf(B)=tf(C)
考虑当大小为2k+1的情况。我们要证明在这种情况下,tf(A)tf(B)=tf(C)

根据定义,有
tf(A)=(tf(A0)+tf(A1),tf(A0)tf(A1))
tf(B)=(tf(B0)+tf(B1),tf(B0)tf(B1))
tf(A)tf(B)=([tf(A0)+tf(A1)][tf(B0)+tf(B1)],[tf(A0)tf(A1)][tf(B0)tf(B1)])
暴力把式子拆开,有
tf(A)tf(B)=
(tf(A0)tf(B0)+tf(A0)tf(B1)+tf(A1)tf(B0)+tf(A1)tf(B1),
tf(A0)tf(B0)+tf(A1)tf(B1)tf(A0)tf(B1)tf(A1)tf(B0))
注意到这里的A0,A1,B0,B1都是大小为2k的向量,符合归纳的基础。于是,
tf(A)tf(B)=
(tf(A0@B0)+tf(A0@B1)+tf(A1@B0)+tf(A1@B1),
tf(A0@B0)+tf(A1@B1)tf(A0@B1)tf(A1@B0))

由于异或每一位是独立,而这里如果我们把C按照最高位为0或1分成两部分,最高位的异或和其它位不相关。
于是有

C=(C0,C1)=(A0@B0+A1@B1,A0@B1+A1@B0)
=tf(C)=tf(C0,C1)
=tf(A0@B0+A1@B1,A0@B1+A1@B0)
=(tf(A0@B0+A1@B1)+tf(A0@B1+A1@B0),
tf(A0@B0+A1@B1)tf(A0@B1+A1@B0))
=(tf(A0@B0)+tf(A1@B1)+tf(A0@B1)+tf(A1@B0),
tf(A0@B0)+tf(A1@B1)tf(A0@B1)tf(A1@B0))=tf(A)tf(B)=
(抱歉我不会排版。式子长得比较丑没关系,看得懂就好)
至此,证毕。

然而这只是一个tf,还有一个逆变换utf。这个逆变换的正确性可以用同样的方法证明,即先看k=1的情况,然后一步一步用数归推上去。
证明方法比较简单(真的很简单),这里略过。

至于其它位运算,其证明方法与异或一致,这里不赘述。

说了这么多,其实这个证明并没有什么卵用(只是使得自己相信它是对的)。。大家还是背代码吧。。。


模板:

void FWT(int a[],int n)
{
    for(int d=1;d<n;d<<=1)
        for(int m=d<<1,i=0;i<n;i+=m)
            for(int j=0;j<d;j++)
            {
                int x=a[i+j],y=a[i+j+d];
                a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
                //xor:a[i+j]=x+y,a[i+j+d]=x-y;
                //and:a[i+j]=x+y;
                //or:a[i+j+d]=x+y;
            }
}

void UFWT(int a[],int n)
{
    for(int d=1;d<n;d<<=1)
        for(int m=d<<1,i=0;i<n;i+=m)
            for(int j=0;j<d;j++)
            {
                int x=a[i+j],y=a[i+j+d];
                a[i+j]=1LL*(x+y)*rev%mod,a[i+j+d]=(1LL*(x-y)*rev%mod+mod)%mod;
                //xor:a[i+j]=(x+y)/2,a[i+j+d]=(x-y)/2;
                //and:a[i+j]=x-y;
                //or:a[i+j+d]=y-x;
            }
}
void solve(int a[],int b[],int n)
{
    FWT(a,n);
    FWT(b,n);
    for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i]%mod;
    UFWT(a,n);
}


阅读更多
个人分类: 数论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭