机器学习原理之 -- XGboost原理详解

        XGBoost(eXtreme Gradient Boosting)是近年来在数据科学和机器学习领域中广受欢迎的集成学习算法。它在多个数据科学竞赛中表现出色,被广泛应用于各种机器学习任务。本文将详细介绍XGBoost的由来、基本原理、算法细节、优缺点及应用场景。

XGBoost的由来

        XGBoost由Tianqi Chen等人在2014年开发,是一种基于梯度提升(Gradient Boosting)的增强算法。其开发初衷是为了提升梯度提升决策树(GBDT)的计算效率和预测性能。XGBoost在Kaggle等数据竞赛平台上表现出色,迅速引起了学术界和工业界的广泛关注和应用。

XGBoost的基本原理

        XGBoost是GBDT的一种高效实现,其核心思想是在前一轮模型的基础上,通过拟合当前残差(预测误差)来构建新的决策树,从而逐步提升模型的预测能力。XGBoost在GBDT的基础上进行了多项改进,包括二阶导数优化、正则化处理、并行计算等,使得其在计算效率和模型性能上都得到了显著提升。

梯度提升(Gradient Boosting)

        梯度提升是一种迭代的机器学习算法,通过逐步改进模型的预测能力来最小化损失函数。其核心思想是每次训练新的弱学习器(通常是决策树),通过负梯度方向最小化当前的损失函数,从而逐步提升整体模型的性能。

XGBoost的算法细节

1. 模型初始化

        首先,初始化模型 eq?F_0%28x%29 为常数模型,使得损失函数 L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值