快速沃尔什变换(FWT)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhouyuheng2003/article/details/84728063

1前言

在之前学完了FFT稍微码了一些题、也学习了一下NTT相关的知识之后,我觉得有必要学习一下FWT,这篇博客就是阐述我对FWT的理解的

2介绍

2.1解决的问题

对于FFT,它的过程本质上是cn=i+j=naibjc_n=\sum_{i+j=n}a_i*b_j
然后考虑一下那个i+j=ni+j=n的情况,如果换个符号,比如ij=ni-j=n,那么想必你也会做,只要把B翻转就好了
在NTT的题中,其实ij=n(modp)i*j=n\pmod p,在p有原根的时候也可以做,直接把i位置的数换到logi\log_{原根}i,然后再做NTT,最后弄回来就好了(update:对怎么样的数有原根、对原根的性质有不理解的可以看我的博客原根哦)
那么对于ij=ni|j=ni&j=ni\& j=nij=ni\oplus j=n的情况怎么办?
可以用FWT来解决
这篇文章中用到的只是快速沃尔什变换(FWT)的一个特殊情况,有兴趣可以去网上搜一搜广义的快速沃尔什是干什么的

2.2文章中有可能用到的符号&特殊说明

首先,这篇博客中提到的n(多项式的项数)如无特殊说明都是2的幂次,方便处理,如果不为2的幂次,可以在高次加0系数
然后,对于一些公式,你可能会觉得比较长,其实只是因为我列的项数比较多导致的,你可以只看第一项来看懂我在推什么


对于一个一般的多项式f(x)=a0x0+a1x1++an1xn1f(x)=a_0x^0+a_1x^1+···+a_{n-1}x^{n-1}
将其表示为(a0,a1,a2an1)(a_0,a_1,a_2···a_{n-1})


定义多项式加法
C(x)=A(x)+B(x)=(a0,a1,a2an1)+(b0,b1,b2bn1)=(a0+b0,a1+b1,a2+b2an1+bn1) \begin{aligned} C(x)&=A(x)+B(x)\\ &=(a_0,a_1,a_2···a_{n-1})+(b_0,b_1,b_2···b_{n-1})\\ &=(a_0+b_0,a_1+b_1,a_2+b_2···a_{n-1}+b_{n-1})\\ \end{aligned}


多项式的减法把符号变成减号
C(x)=A(x)B(x)=(a0,a1,a2an1)(b0,b1,b2bn1)=(a0b0,a1b1,a2b2an1bn1) \begin{aligned} C(x)&=A(x)-B(x)\\ &=(a_0,a_1,a_2···a_{n-1})-(b_0,b_1,b_2···b_{n-1})\\ &=(a_0-b_0,a_1-b_1,a_2-b_2···a_{n-1}-b_{n-1})\\ \end{aligned}


多项式的对应系数相乘乘法(区别于那个FFT做的卷积的乘法
C(x)=A(x)B(x)=(a0,a1,a2an1)(b0,b1,b2bn1)=(a0b0,a1b1,a2b2an1bn1) \begin{aligned} C(x)&=A(x)*B(x)\\ &=(a_0,a_1,a_2···a_{n-1})*(b_0,b_1,b_2···b_{n-1})\\ &=(a_0*b_0,a_1*b_1,a_2*b_2···a_{n-1}*b_{n-1})\\ \end{aligned}


对于多项式的一个操作@(@{(),&(),()})@(@ \in \left\{ |(或),\&(与),\oplus(异或) \right\}),请看清楚,这里的是卷积,FFT做的多项式乘法相当于这里的符号用“+”,然而多项式的“+”已经被定义过了,前面的系数相乘乘法事实上不应该用那个符号,所以没有列出
C(x)=A(x)@B(x)=(a0,a1,a2an1)@(b0,b1,b2bn1)=(i@j=0aibj,i@j=1aibj,i@j=2aibji@j=n1aibj) \begin{aligned} C(x)&=A(x)@B(x)\\ &=(a_0,a_1,a_2···a_{n-1})@(b_0,b_1,b_2···b_{n-1})\\ &=(\sum _{i@j=0}a_i*b_j,\sum _{i@j=1}a_i*b_j,\sum _{i@j=2}a_i*b_j···\sum _{i@j=n-1}a_i*b_j)\\ \end{aligned}
特殊的,这里的@@运算具有分配律,即(A+B)@C=A@C+B@C(A+B)@C=A@C+B@C,至于证明也非常方便:
i@j=x(ai+bi)cj=i@j=x(aicj+bicj)=i@j=xaicj+i@j=xbicj \begin{aligned} \sum _{i@j=x}(a_i+b_i)*c_j&=\sum _{i@j=x}(a_i*c_j+b_i*c_j)\\ &=\sum _{i@j=x}a_i*c_j+\sum _{i@j=x}b_i*c_j \end{aligned}


另外对于一个多项式AA,设n=2kn=2^k,定义A0A_0AA的前2k12^{k-1}个系数、定义A1A_1AA的后2k12^{k-1}个系数
定义运算A=(B,C)A=(B,C)表示B这个多项式后面接上C等于A
用字母表示大概意思是:
(A,B)=((a0,a1,a2ax1),(b0,b1,b2by1))=(a0,a1,a2ax1,b0,b1,b2by1) \begin{aligned} (A,B)&=((a_0,a_1,a_2···a_{x-1}),(b_0,b_1,b_2···b_{y-1}))\\ &=(a_0,a_1,a_2···a_{x-1},b_0,b_1,b_2···b_{y-1})\\ \end{aligned}

2.3FWT的大致思路

假设我们现在有两个多项式AABB以及一个位运算符@@,思路和FFT相似,先求出某个多项式FWT(A)FWT(A)FWT(B)FWT(B),然后对应相乘得到多项式FWT(C)FWT(C),最后进行IFWTIFWT,得出结果CC

3实现

update:这里的前两个(and/or)更严格意义上来说是FMT,本篇博客提供FMT本身的相关内容,另一篇博客提供FMT的更多小应用

3.1or运算(本质FMT)

3.1.1构造

先来讲or运算吧
现在要求的是:cn=ij=naibjc_n=\sum_{i|j=n}a_ib_j
定义FWT(A):
FWT(A)=(i0=0ai,i1=1ai,i2=2aii(n1)=(n1)ai) \begin{aligned} FWT(A)=(\sum_{i|0=0}a_i,\sum_{i|1=1}a_i,\sum_{i|2=2}a_i···\sum_{i|(n-1)=(n-1)}a_i) \end{aligned}
容易发现一件事:FWT(AB)=FWT(A)FWT(B)FWT(A|B)=FWT(A)*FWT(B)
证明:
FWT(A)FWT(B)=(i0=0ai,i1=1ai,i2=2aii(n1)=(n1)ai)(i0=0bi,i1=1bi,i2=2bii(n1)=(n1)bi)=((i0=0ai)(j0=0bj),(i1=1ai)(j1=1bj),(i2=2ai)(j2=2bj)(i(n1)=(n1)ai)(j(n1)=(n1)bj))=(ij0=0aibj,ij1=1aibj,ij2=2aibjij(n1)=(n1)aibj)=(k0=0ij=kaibj,k1=1ij=kaibj,k2=2ij=kaibjk(n1)=(n1)ij=kaibj)=FWT(AB) \begin{aligned} FWT(A)*FWT(B)&=(\sum_{i|0=0}a_i,\sum_{i|1=1}a_i,\sum_{i|2=2}a_i···\sum_{i|(n-1)=(n-1)}a_i)*(\sum_{i|0=0}b_i,\sum_{i|1=1}b_i,\sum_{i|2=2}b_i···\sum_{i|(n-1)=(n-1)}b_i)\\ &=((\sum_{i|0=0}a_i)*(\sum_{j|0=0}b_j),(\sum_{i|1=1}a_i)*(\sum_{j|1=1}b_j),(\sum_{i|2=2}a_i)*(\sum_{j|2=2}b_j)···(\sum_{i|(n-1)=(n-1)}a_i)*(\sum_{j|(n-1)=(n-1)}b_j))\\ &=(\sum_{i|j|0=0}a_i*b_j,\sum_{i|j|1=1}a_i*b_j,\sum_{i|j|2=2}a_i*b_j···\sum_{i|j|(n-1)=(n-1)}a_i*b_j)\\ &=(\sum_{k|0=0}\sum_{i|j=k}a_i*b_j,\sum_{k|1=1}\sum_{i|j=k}a_i*b_j,\sum_{k|2=2}\sum_{i|j=k}a_i*b_j···\sum_{k|(n-1)=(n-1)}\sum_{i|j=k}a_i*b_j)\\ &=FWT(A|B) \end{aligned}
当然这个的证明还有其它的很多方法,我觉得我的这个证明还是比较清楚的
也就是说,现在:

  • 问题一:
    已知一个多项式A,求FWT(A)
    即FWT
  • 问题二:
    已知FWT(A),求A
    即IFWT

解决这两个问题,我们就能够:

  • 已知A,B
  • FWT,求出FWT(A),FWT(B)
  • 对应系数相乘,求出FWT(A|B)
  • IFWT,求出A|B
3.1.2计算

我们可以递归定义
FWT(A)={(FWT(A0),FWT(A0+A1))(n1)A(n=1)FWT(A)=\begin{cases} (FWT(A_0),FWT(A_0+A_1))(n\ne1)\\ A(n=1) \end{cases}
这么定义的原因:因为A0A_0的编号的最高位都是0,A1A_1的编号与A0A_0的编号的最高位变成1的结果一一对应,因为是or运算,所以A0A_0能到A1A_1里一一对应的贡献
然后考虑IFWTIFWT(定义IFWT(FWT(A))=AIFWT(FWT(A))=A),由于FWT(A+B)=FWT(A)+FWT(B)FWT(A+B)=FWT(A)+FWT(B)(这个证明不用说了吧,看我的定义,这个相当于乘法分配律拆一下就好了),可以列出IFWTIFWT的式子,推导:
已知FWT(A)0FWT(A)_0FWT(A)1FWT(A)_1,求A0A_0A1A_1
FWT(A)0=FWT(A0)A0=IDFT(FWT(A0))=IDFT(FWT(A)0)FWT(A)1=FWT(A0)+FWT(A1)A1=IDFT(FWT(A1))=IDFT(FWT(A)1FWT(A)0)\because FWT(A)_0=FWT(A_0)\\ \therefore A_0=IDFT(FWT(A_0))=IDFT(FWT(A)_0)\\ \because FWT(A)_1=FWT(A_0)+FWT(A_1)\\ \therefore A_1= IDFT(FWT(A_1))=IDFT(FWT(A)_1-FWT(A)_0)


总结:
IFWT(A)={(IFWT(A0),IFWT(A1A0))(n1)A(n=1)IFWT(A)=\begin{cases} (IFWT(A_0),IFWT(A_1-A_0))(n\ne1)\\ A(n=1) \end{cases}
然后就可以写代码了(代码和FFT有点像)

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
                A[j+k+i]+=A[j+k]*fla;
}

然后or运算的FWT就没了

3.2and运算(本质FMT)

3.2.1构造

and其实和or差的不多
现在要求的是:cn=i&amp;j=naibjc_n=\sum_{i\&amp;j=n}a_ib_j
同样定义FWT(A):
FWT(A)=(i&amp;0=0ai,i&amp;1=1ai,i&amp;2=2aii&amp;(n1)=(n1)ai) \begin{aligned} FWT(A)=(\sum_{i\&amp;0=0}a_i,\sum_{i\&amp;1=1}a_i,\sum_{i\&amp;2=2}a_i···\sum_{i\&amp;(n-1)=(n-1)}a_i) \end{aligned}
同样的:FWT(A&amp;B)=FWT(A)FWT(B)FWT(A\&amp;B)=FWT(A)*FWT(B)
证明:
FWT(A)FWT(B)=(i&amp;0=0ai,i&amp;1=1ai,i&amp;2=2aii&amp;(n1)=(n1)ai)(i&amp;0=0bi,i&amp;1=1bi,i&amp;2=2bii&amp;(n1)=(n1)bi)=((i&amp;0=0ai)(j&amp;0=0bj),(i&amp;1=1ai)(j&amp;1=1bj),(i&amp;2=2ai)(j&amp;2=2bj)(i&amp;(n1)=(n1)ai)(j&amp;(n1)=(n1)bj))=(i&amp;j&amp;0=0aibj,i&amp;j&amp;1=1aibj,i&amp;j&amp;2=2aibji&amp;j&amp;(n1)=(n1)aibj)=(k&amp;0=0i&amp;j=kaibj,k&amp;1=1i&amp;j=kaibj,k&amp;2=2i&amp;j=kaibjk&amp;(n1)=(n1)i&amp;j=kaibj)=FWT(A&amp;B) \begin{aligned} FWT(A)*FWT(B)&amp;=(\sum_{i\&amp;0=0}a_i,\sum_{i\&amp;1=1}a_i,\sum_{i\&amp;2=2}a_i···\sum_{i\&amp;(n-1)=(n-1)}a_i)*(\sum_{i\&amp;0=0}b_i,\sum_{i\&amp;1=1}b_i,\sum_{i\&amp;2=2}b_i···\sum_{i\&amp;(n-1)=(n-1)}b_i)\\ &amp;=((\sum_{i\&amp;0=0}a_i)*(\sum_{j\&amp;0=0}b_j),(\sum_{i\&amp;1=1}a_i)*(\sum_{j\&amp;1=1}b_j),(\sum_{i\&amp;2=2}a_i)*(\sum_{j\&amp;2=2}b_j)···(\sum_{i\&amp;(n-1)=(n-1)}a_i)*(\sum_{j\&amp;(n-1)=(n-1)}b_j))\\ &amp;=(\sum_{i\&amp;j\&amp;0=0}a_i*b_j,\sum_{i\&amp;j\&amp;1=1}a_i*b_j,\sum_{i\&amp;j\&amp;2=2}a_i*b_j···\sum_{i\&amp;j\&amp;(n-1)=(n-1)}a_i*b_j)\\ &amp;=(\sum_{k\&amp;0=0}\sum_{i\&amp;j=k}a_i*b_j,\sum_{k\&amp;1=1}\sum_{i\&amp;j=k}a_i*b_j,\sum_{k\&amp;2=2}\sum_{i\&amp;j=k}a_i*b_j···\sum_{k\&amp;(n-1)=(n-1)}\sum_{i\&amp;j=k}a_i*b_j)\\ &amp;=FWT(A\&amp;B) \end{aligned}
然后没啦

3.2.2计算

我们一样可以递归定义
FWT(A)={(FWT(A0+A1),FWT(A1))(n1)A(n=1)FWT(A)=\begin{cases} (FWT(A_0+A_1),FWT(A_1))(n\ne1)\\ A(n=1) \end{cases}
这么定义的原因(其实和or差不多):因为A0A_0的编号的最高位都是0,A1A_1的编号与A0A_0的编号的最高位变成1的结果一一对应,因为是and运算,所以A1A_1能到A0A_0里一一对应的贡献
然后是IFWTIFWT,推导:
已知FWT(A)0FWT(A)_0FWT(A)1FWT(A)_1,求A0A_0A1A_1
FWT(A)0=FWT(A0)+FWT(A1)A0=IDFT(FWT(A0))=IDFT(FWT(A)0FWT(A)1)FWT(A)1=FWT(A1)A1=IDFT(FWT(A1))=IDFT(FWT(A)1)\because FWT(A)_0=FWT(A_0)+FWT(A_1)\\ \therefore A_0=IDFT(FWT(A_0))=IDFT(FWT(A)_0-FWT(A)_1)\\ \because FWT(A)_1=FWT(A_1)\\ \therefore A_1= IDFT(FWT(A_1))=IDFT(FWT(A)_1)


总结:
IFWT(A)={(IFWT(A0A1),IFWT(A1))(n1)A(n=1)IFWT(A)=\begin{cases} (IFWT(A_0-A_1),IFWT(A_1))(n\ne1)\\ A(n=1) \end{cases}
然后上代码

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
                A[j+k]+=A[j+k+i]*fla;
}

3.3xor运算(本质FWT)

3.3.1构造

哦不,这是最烦的xor运算,我的思路在xor下是最烦的
现在要求的是:cn=ij=naibjc_n=\sum_{i\oplus j=n}a_ib_j
也要定义FWT(A),然而定义有一点烦:
update:这是新版本,比较清晰易懂:

符号说明:
popcount(x)popcount(x)等于x在二进制下1的数量,我在下面简写为pc(x)pc(x)

FWT(A)=((1)pc(i&amp;0)ai,(1)pc(i&amp;1)ai(1)pc(i&amp;(n1))ai) FWT(A)=(\sum (-1)^{pc(i\&amp;0)}a_i,\sum (-1)^{pc(i\&amp;1)}a_i···\sum (-1)^{pc(i\&amp;(n-1))}a_i)
证明:FWT(AB)=FWT(A)FWT(B)FWT(A\oplus B)=FWT(A)*FWT(B)
FWT(A)FWT(B)=((1)pc(i&amp;0)ai,(1)pc(i&amp;1)ai(1)pc(i&amp;(n1))ai)((1)pc(i&amp;0)bi,(1)pc(i&amp;1)bi(1)pc(i&amp;(n1))bi)=(((1)pc(i&amp;0)ai)(((1)pc(j&amp;0)bj)),((1)pc(i&amp;1)ai)((1)pc(j&amp;1)bj)((1)pc(i&amp;(n1))ai)((1)pc(j&amp;(n1))bj))=((1)pc(ij&amp;0)aibj,((1)pc(ij&amp;1)aibj((1)pc(ij&amp;(n1))aibj)=((1)pc(k&amp;0)ij=kaibj,(1)pc(k&amp;1)ij=kaibj(1)pc(k&amp;(n1))ij=kaibj)=FWT(AB) \begin{aligned} FWT(A)*FWT(B)&amp;=(\sum (-1)^{pc(i\&amp;0)}a_i,\sum (-1)^{pc(i\&amp;1)}a_i···\sum (-1)^{pc(i\&amp;(n-1))}a_i)*(\sum (-1)^{pc(i\&amp;0)}b_i,\sum (-1)^{pc(i\&amp;1)}b_i···\sum (-1)^{pc(i\&amp;(n-1))}b_i)\\ &amp;=((\sum (-1)^{pc(i\&amp;0)}a_i)*((\sum (-1)^{pc(j\&amp;0)}b_j)),(\sum (-1)^{pc(i\&amp;1)}a_i)*(\sum (-1)^{pc(j\&amp;1)}b_j)···(\sum (-1)^{pc(i\&amp;(n-1))}a_i)*(\sum (-1)^{pc(j\&amp;(n-1))}b_j))\\ &amp;=(\sum (-1)^{pc(i\oplus j\&amp;0)}a_i*b_j,(\sum (-1)^{pc(i\oplus j\&amp;1)}a_i*b_j···(\sum (-1)^{pc(i\oplus j\&amp;(n-1))}a_i*b_j)\\ &amp;=(\sum (-1)^{pc(k\&amp;0)}\sum _{i\oplus j=k}a_i*b_j,\sum (-1)^{pc(k\&amp;1)}\sum _{i\oplus j=k}a_i*b_j···\sum (-1)^{pc(k\&amp;(n-1))}\sum _{i\oplus j=k}a_i*b_j)\\ &amp;=FWT(A\oplus B) \end{aligned}


下面是老版本,是一个不太标准的形式,你可以直接跳到3.3.2

符号说明:
popcount(x)popcount(x)等于x在二进制下1的数量,我在下面简写为pc(x)pc(x)
逻辑运算符a?b:c 代表若a为真,那么值为b,若为假,值为c

FWT(A)=(pc(i&amp;0)mod 2==0?ai:ai,pc(i&amp;1)mod 2==0?ai:ai,pc(i&amp;2)mod 2==0?ai:aipc(i&amp;(n1))mod 2==0?ai:ai) FWT(A)=(\sum pc(i\&amp;0)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;1)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;2)mod\ 2==0? a_i:-a_i···\sum pc(i\&amp;(n-1))mod\ 2==0? a_i:-a_i)
容易发现一件事:FWT(AB)=FWT(A)FWT(B)FWT(A\oplus B)=FWT(A)*FWT(B)
证明:
FWT(A)FWT(B)=(pc(i&amp;0)mod 2==0?ai:ai,pc(i&amp;1)mod 2==0?ai:ai,pc(i&amp;2)mod 2==0?ai:aipc(i&amp;(n1))mod 2==0?ai:ai)(pc(i&amp;0)mod 2==0?bi:bi,pc(i&amp;1)mod 2==0?bi:bi,pc(i&amp;2)mod 2==0?bi:bipc(i&amp;(n1))mod 2==0?bi:bi)=((pc(i&amp;0)mod 2==0?ai:ai)(pc(j&amp;0)mod 2==0?bj:bj),(pc(i&amp;1)mod 2==0?ai:ai)(pc(j&amp;1)mod 2==0?bj:bj),(pc(i&amp;2)mod 2==0?ai:ai)(pc(j&amp;2)mod 2==0?bj:bj)(pc(i&amp;(n1))mod 2==0?ai:ai)(pc(j&amp;(n1))mod 2==0?bj:bj))=(pc((ij)&amp;0)mod 2==0?aibj:aibj,pc((ij)&amp;1)mod 2==0?aibj:aibj,pc((ij)&amp;2)mod 2==0?aibj:aibjpc((ij)&amp;(n1))mod 2==0?aibj:aibj)=(pc(k&amp;0)mod 2==0?ij=kaibj:ij=kaibj,pc(k&amp;1)mod 2==0?ij=kaibj:ij=kaibj,pc(k&amp;2)mod 2==0?ij=kaibj:ij=kaibjpc(k&amp;(n1))mod 2==0?ij=kaibj:ij=kaibj)=FWT(AB) \begin{aligned} FWT(A)*FWT(B)&amp;=(\sum pc(i\&amp;0)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;1)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;2)mod\ 2==0? a_i:-a_i···\sum pc(i\&amp;(n-1))mod\ 2==0? a_i:-a_i)*(\sum pc(i\&amp;0)mod\ 2==0? b_i:-b_i,\sum pc(i\&amp;1)mod\ 2==0? b_i:-b_i,\sum pc(i\&amp;2)mod\ 2==0? b_i:-b_i···\sum pc(i\&amp;(n-1))mod\ 2==0? b_i:-b_i)\\ &amp;=((\sum pc(i\&amp;0)mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;0)mod\ 2==0? b_j:-b_j),(\sum pc(i\&amp;1)mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;1)mod\ 2==0? b_j:-b_j),(\sum pc(i\&amp;2)mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;2)mod\ 2==0? b_j:-b_j)···(\sum pc(i\&amp;(n-1))mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;(n-1))mod\ 2==0? b_j:-b_j))\\ &amp;=(\sum pc((i\oplus j)\&amp;0)mod\ 2==0? a_i*b_j:-a_i*b_j,\sum pc((i\oplus j)\&amp;1)mod\ 2==0? a_i*b_j:-a_i*b_j,\sum pc((i\oplus j)\&amp;2)mod\ 2==0? a_i*b_j:-a_i*b_j···\sum pc((i\oplus j)\&amp;(n-1))mod\ 2==0? a_i*b_j:-a_i*b_j)\\ &amp;=(\sum pc(k\&amp;0)mod\ 2==0?\sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j,\sum pc(k\&amp;1)mod\ 2==0? \sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j,\sum pc(k\&amp;2)mod\ 2==0? \sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j···\sum pc(k\&amp;(n-1))mod\ 2==0? \sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j)\\ &amp;=FWT(A\oplus B) \end{aligned}
这个证明写的我累死了


证完就好了

3.3.2计算

定义
FWT(A)={(FWT(A0+A1),FWT(A0A1))(n1)A(n=1)FWT(A)=\begin{cases} (FWT(A_0+A_1),FWT(A_0-A_1))(n\ne1)\\ A(n=1) \end{cases}
我觉得FWT的脑洞真大,为啥这样就好了呢
就让我来解释一下吧
前提条件一样FWT(A+B)=FWT(A)+FWT(B)FWT(A+B)=FWT(A)+FWT(B),通过这个把式子拆开
考虑当前二进制最高位,前2k12^{k-1}项的位置最高位都为0,所以and最高位之后一定不会是1所以A0A_0A1A_1的贡献都是原符号,由于后2k12^{k-1}项的位置最高位都为1,所以A0A_0的贡献都是原符号,A1A_1的贡献符号反号
那么IFWT呢?
推导:
已知FWT(A)0FWT(A)_0FWT(A)1FWT(A)_1,求A0A_0A1A_1
FWT(A)0=FWT(A0)+FWT(A1)FWT(A)1=FWT(A0)FWT(A1)A0=IDFT(FWT(A0))=IDFT(FWT(A)0+FWT(A)12)A1=IDFT(FWT(A1))=IDFT(FWT(A)0FWT(A)12)\because FWT(A)_0=FWT(A_0)+FWT(A_1),FWT(A)_1=FWT(A_0)-FWT(A_1)\\ \therefore A_0=IDFT(FWT(A_0))=IDFT(\frac {FWT(A)_0+FWT(A)_1}2),A_1= IDFT(FWT(A_1))=IDFT(\frac {FWT(A)_0-FWT(A)_1}2)


总结:
IFWT(A)={(IFWT(A0)+IFWT(A1)2,IFWT(A0)IFWT(A1)2)(n1)A(n=1)IFWT(A)=\begin{cases} (\frac {IFWT(A_0)+IFWT(A_1)}{2},\frac {IFWT(A_0)-IFWT(A_1)}{2})(n\ne1)\\ A(n=1) \end{cases}

代码

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
            {
                const int x=A[j+k],y=A[j+k+i];
                A[j+k]=x+y;
                A[j+k+i]=x-y;
                if(fla==-1)A[j+k]/=2,A[j+k+i]/=2;
            }
}

然后好像还有个优化,在一定条件下可以使用,就是把除法留到最后除,代码:

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
            {
                const int x=A[j+k],y=A[j+k+i];
                A[j+k]=x+y;
                A[j+k+i]=x-y;
            }
    if(fla==-1)
        for(rg int i=0;i<lenth;i++)
            A[i]/=lenth;
}

这就是xor的FWT啦

4总结

这个FWT写了好久,终于完结了,其实FWT本身代码并不长,关键在于理解。FWT用到的地方没FFT多,但依然值得学一下,拓宽思路
相关的题?
例题1(by update): NowCoder 295-H
题意,给出n个数(n500000ai500000n\leq500000,a_i\leq500000),要求选出最少的数使异或值为所有数的异或值
解法,用0/1代表x值是否能取到,使用FWT异或卷积,容易发现最多做log次,每一次推复杂度O(n)O(n),做IDFT时由于只要求一个值,所以复杂度O(n)O(n),总复杂度O(nlogn)O(nlogn)
代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
#define rg register
typedef long long LL;
template <typename T> inline T max(const T a,const T b){return a>b?a:b;}
template <typename T> inline T min(const T a,const T b){return a<b?a:b;}
template <typename T> inline void mind(T&a,const T b){a=a<b?a:b;}
template <typename T> inline void maxd(T&a,const T b){a=a>b?a:b;}
template <typename T> inline T abs(const T a){return a>0?a:-a;}
template <typename T> inline void swap(T&a,T&b){T c=a;a=b;b=c;}
template <typename T> inline T gcd(const T a,const T b){if(!b)return a;return gcd(b,a%b);}
template <typename T> inline T lcm(const T a,const T b){return a/gcd(a,b)*b;}
template <typename T> inline T square(const T x){return x*x;};
template <typename T> inline void read(T&x)
{
    char cu=getchar();x=0;bool fla=0;
    while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}
    while(isdigit(cu))x=x*10+cu-'0',cu=getchar();
    if(fla)x=-x;
}
template <typename T> inline void printe(const T x)
{
    if(x>=10)printe(x/10);
    putchar(x%10+'0');
}
template <typename T> inline void print(const T x)
{
    if(x<0)putchar('-'),printe(-x);
    else printe(x);
}
const int mod=998244353,lenth=524288;
int n,a[lenth],pc[lenth],val,f[lenth];
inline void FWT(int *A)
{
	for(rg int i=1;i<lenth;i<<=1)
		for(rg int j=0;j<lenth;j+=i<<1)
			for(rg int k=0;k<i;k++)
			{
				const int x=A[j+k],y=A[j+k+i];
				A[j+k]=(x+y)%mod;
				A[j+k+i]=(x+mod-y)%mod;
			}
}
int main()
{
	read(n);
	for(rg int i=1,x;i<=n;i++)read(x),a[i]=1,val^=x;
	a[0]=1;
	FWT(a);
	for(rg int i=1;i<lenth;i++)pc[i]=pc[i^(i&-i)]+1;
	for(rg int i=0;i<lenth;i++)f[i]=1;
	for(rg int tim=0;tim<=19;tim++)
	{
		LL calc=0;
		for(rg int i=0;i<lenth;i++)calc+=(pc[i&val]&1)?-f[i]:f[i];
		calc%=mod;
		if(calc)
		{
			print(n-tim);
			return 0;
		}
		for(rg int i=0;i<lenth;i++)f[i]=(LL)f[i]*a[i]%mod;
	}
	return 0;
}

例题2(by update):
我的博客:CF 453 D
撒花结束!
由于写这篇博客写的匆忙,并且很多东西是自己推的,所以如果发现有误请及时提醒我哦

没有更多推荐了,返回首页