论文翻译一:A Faster Maximum-Likelihood Modulation Classification in Flat Fading Non-Gaussian Channels

30天挑战翻译100篇论文

坚持不懈,努力改变,在翻译中学习,在学习中改变,在改变中成长…

A Faster Maximum-Likelihood Modulation Classification in Flat Fading Non-Gaussian Channels

一种在平坦衰落非高斯信道中更快的最大似然估计的调制分类方法
Wenhao Chen , Zhuochen Xie, Lu Ma, Jie Liu, and Xuwen Liang

摘要—在本文中,我们使用平方迭代方法和参数检查来加快在平坦衰落非高斯信道中盲目估计信道参数时期望/条件最大化(ECM)算法的收敛速度,此外,我们提出了在平坦衰落的非高斯信道上,基于最大似然估计器的自动调制分类(AMC) 方法。 数值结果表明,该方法可以加快ECM算法的收敛速度,并且基于AMC的算法比基于ECM的算法具有更快的收敛速度,而前者的精度与后者相比几乎没有损失。
关键字-最大似然估计,期望/条件最大化算法,平方迭代法,高斯混合模型,自动调制分类。

1.简介

可以将自动调制分类(AMC)定义为从一组给定的可能调制类型中识别出噪声信号的调制类型的过程[1]。 它是信号检测和解调之间的中间步骤,并且在各种军事和民用应用(例如电子战,软件无线电,干扰识别,频谱管理等)中发挥关键作用。
近年来,越来越多的文献关注非高斯噪声下的AMC,因为实验研究表明,大多数无线电信道会同时经历自然噪声和人为噪声,并且组合噪声是高度非高斯过程。 参考文献[2]和[3]提出了基于调制相关特征的AMC。 参考文献[4]和[5]提出了基于分布测试的快速而强大的AMC。 尽管基于特征的分类器和基于分布测试的分类器通常更易于实现,但它们不是最优的。 基于可能性的分类器在贝叶斯意义上是最优的,因为它们将分类错误的可能性降到最低[6]。 在[7]中,非高斯噪声是由N项高斯混合建模的,然后使用混合似然比检验(HLRT)来识别调制格式。
通过使用期望/条件最大化(ECM)算法盲目估计未知模型参数。 由于ECM的收敛速度慢,基于ECM的AMC非常耗时。
在本文中,为了在非高斯噪声下加速AMC,我们提出了一种基于平方迭代法(SQUAREM)来估计ECM的信道系数和高斯混合模型(GMM)参数的新方法[8]。 在学习GMM时,基本SQUAREM(bSQUAREM)将不会保留某些参数的约束,例如 混合比例是非负的,每个高斯分量的协方差矩阵是对称正定的,这将导致无意义的估计。 因此,我们在SQUAREM的每次迭代中都添加了参数检查,我们将其称为带有参数检查(SQUAREM-PC)算法的SQUAREM,它可以加快ECM的收敛速度,并收敛到对数似然函数的固定点。
这篇文章的其余部分安排如下。 第二部分描述了信道模型和调制分类器。
第三节介绍了拟议算法的细节。 第四部分提供了数值结果。 最后,第五节给出结论。

2. 信道模型和调制分类器

令M为大小为m = | M |的线性调制星座图点集。 传输的符号 { s t } t = 1 T \{s_t\} ^T_{ t = 1} { st}t=1T从M均匀且独立地绘制。经过预处理,匹配滤波器输出处每个符号一个采样处采样的接收信号的基带复包络可以写为
y t = α s t + ϵ t y_t = \alpha s_t +\epsilon _t yt=αst+ϵt ,t=1,…,T, (1)
其中,α是一个复数因子,用于表示信号经历的平坦衰落以及发射信号的未知功率和载波相位,T表示接收符号的数量。 如[4]中,我们假设 { s t } t = 1 T \{s_t\} ^T_{ t = 1} { st}t=1T是一组独立的相同分布的(i.i.d)复数随机变量, ϵ t \epsilon _t ϵt的实部和虚部都是i.i.d。 ϵ t \epsilon _t ϵt可以看作是2 维矢量,包括实部和虚部。 在这里,我们选择N项高斯混合模型来近似 ϵ t \epsilon _t ϵt的概率密度函数(pdf)
在这里插入图片描述
其中 λ n λ_n λn是从pdf中的第n个项中选择 ϵ t \epsilon _t ϵt的概率,其中0≤ λ n λ_n λn≤1并且 ∑ n = 1 N λ n = 1 \sum ^ N_{ n = 1}λ_n =1 n=1Nλn=1 ∑ n = ( σ n 2 / 2 ) I \sum_n =(σ^2 _n / 2)I n=σn2/2I,其中I表示单位矩阵, σ n 2 σ^2_ n σn2是第n个高斯分量的能量。
AMC的主要工作是通过分析接收信号 { y t } t = 1 T \{y_t\}^T _{t = 1} { yt}t=1T来从 S = { M 1 , . . . , M C } S = \{M _1,...,M_C\} S={ M1...MC}中选择调制格式。 最大似然调制分类是一个复合假设检验问题,其中选择最大化 { y t } t = 1 T \{y_t\}^T _{t = 1} { yt}t=1T的对数似然性的假设,H = argmax H i lnp(y 1,...,y T |  H i),其中 H i H_i Hi是假设接收信号的调制方案为 M i M_i Mi,i = 1,…,C,其中C是可能的调制类型的总数。
通过分析接收信号模型,可以通过下式计算 { y t } t = 1 T \{y_t\}^T _{t = 1} { yt}t=1T的对数似然
在这里插入图片描述
其中 s t j i s^ i_{ tj} stji是调制星座图 M i M _i Mi的第j个星座点, m i = ∣ M i ∣ m_ i = | M_ i | mi=Mi 表示 M i M_ i Mi的大小。
由于预先未知α, { λ n } n = 1 N , { σ n 2 } n = 1 N \{λ_n\} ^N _{n = 1},\{σ^2_ n\} ^N_ {n = 1} { λn}n=1N{ σn2}n=1N,因此我们使用混合似然比检验(HLRT),其中通过使用最大似然估计来估计未知参数 假设。 令针对假设 H i H_ i Hi获得的α, { λ n } n = 1 N , { σ n 2 } n = 1 N \{λ_n\} ^N _{n = 1},\{σ^2_ n\} ^N_ {n = 1} {

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值