论文翻译七:Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classification

30天挑战翻译100篇论文

坚持不懈,努力改变,在翻译中学习,在学习中改变,在改变中成长…

Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classification

基于对抗学习的深度学习自动调制分类

Ke Bu , Yuan He , Xiaojun Jing , and Jindong Han

摘要—自动调制分类有助于许多重要的信号处理应用。 最近,深度学习模型已在调制识别中采用,该模型优于基于手工特征的传统机器学习技术。 但是,自动调制分类仍然面临根源的挑战。现有的学习方法仅适用于相同分布的数据。在实际情况下,数据分布随采样频率而变化,因此具有不同采样率的域已经形成。此外,对于具有充分意义的数据集,要充分利用具有良好结构域的模型,我们很难构造具有充分意义的数据集。 在目标域中。 为了应对这些挑战,我们提出了一种对抗传递学习架构(ATLA),将对抗训练和知识传递以统一的方式结合在一起。 对抗训练在域之间执行非对称映射并减少域偏移。 知识转移用于从源域中挖掘先验知识。 实验结果表明,提出的ATLA大大提高了目标模型的性能,优于现有的参数传递方法。 通过减少一半的训练数据,目标模型可实现监督学习的竞争性识别准确性。 凭借十分之一的训练数据,提升的准确性高达17.3%。

关键词-专家迁移学习,域自适应,调制识别,采样频率。

自动调制分类(AMC)对广泛的应用非常重要,包括信号检测,频谱共享,软件定义的弹性光网络(EON)和认知无线电[1] – [4]。 近几十年来,深度学习的进步导致了各个技术领域的发展,例如计算机视觉[5],信息检索[6]和自然语言处理[7],还促进了许多工作信号调制分类[8] – [12]。OShea等。 [8]研究了卷积神经网络(CNN)在复杂值双信号分类上的可行性,与基于专家特征的相对先进的传统方法(如K近邻(KNN),支持向量机(SVM),决策树(DTree)和深度神经网络)相比,效果很好 网络(DNN)。 渐进地,[9]中的工作在RadioML2016.10a数据集[13]上对CNN,残差网络,初始架构和卷积长短期深度神经网络(CLDNN)进行了比较,揭示了深度神经网络的性能不高。 受网络深度的限制。 与更严格的基准测试方法相比,基于深度学习的无线电信号分类[10]在一系列配置和信道损伤范围内可实现显着的性能提升。
值得注意的是,尽管深度学习模型具有出色的性能,但AMC仍然面临许多挑战。 对于深度学习模型,通常假设数据分布是不变的,这是不现实的。 根据任务的复杂性和设备配置,接收器捕获不同采样率的无线信号,从而在成本支出和系统性能之间进行权衡。在此过程中,数据分布会发生变化,因此现有的统计模型无法准确预测调制类型。 此外,需要足够的数据来保证模型的有效性,而数据收集和注释的不便以及高昂的成本使我们无法针对所有可能的采样率构建大型数据集。
为了解决上述挑战,我们将先进的基于对抗的迁移学习引入AMC。 转移学习放宽了训练数据必须独立且与测试数据相同分布(i.i.d.)的约束[14]。 以前有一些与此主题相关的作品。 考虑到空中(OTA)信号分类是一个传输问题,[10]冻结了在模拟无线损伤环境中训练的整个网络,除了最后几个完全连接的层。 然后,使用OTA示例更新可训练的参数。 为了改善模型的通用性,在不考虑信噪比的情况下,利用权重共享来初始化网络[11]。 Q.Wangetal。[12]采用参数传递方法来解决跨各种采样率的传递性问题。 现有的用于调制识别的转移学习方法仅限于参数转移方法,并限于较小的分布差异。 通过将生成对抗网络(GAN)集成到迁移学习中,提出了基于对抗的迁移学习。 [15]提出了一种对抗性监督管理方法的通用框架,并利用基于歧视性的模型,不分权重和标准GAN损失来设计对抗性区分域适应(ADDA)。 受ADDA [15]的启发,我们提出了一种基于深度学习的自动调制分类的对抗迁移学习架构(ATLA)。
总之,本文的主要贡献如下:

  • 我们提出了一种对抗式迁移学习体系结构(ATLA),以在数据不足的情况下显着提高基于深度学习的自动调制分类的性能。该模型利用对抗性训练来减少数据分布之间的差异并实现迁移学习。
  • 提出的ATLA在提升迁移能力和扩展分布差异容忍度方面优于现有的参数传递方法。
  • 除了文章中提到的采样率,所提出的方法还可以在各种缺陷(频率偏移等)下工作,这体现了一般性。

2. 问题陈述

假定无线通信系统由发射机,信道和接收机组成。 接收信号x(n)可以表示为
在这里插入图片描述
其中s(n)表示初始基带信号,调制功能函数F转换基带信号传输信号,然后将传输信号发送到通信信道h(n),并施加加性高斯白噪声w(n)。 N代表接收机的采样率。 通过x(n)区分F是调制识别所需要的。
在转移学习中,源领域S指现有知识,而目标领域T则需要学习。 在这文章中,我们考虑了接收机具有采样频率N s和N t的不同数据域S和T的情况。 我们建立了一个注释充分的源数据集D s,其中包含足够的信号样本X s和标签Y s。 训练源模型M s来预测源数据分布ps(x,y; N s)。 对于具有N t的信号,我们假设样本X t和标签Y t是从目标数据分布p t(x,y; N t)中提取的。 目标数据集D t中的数据不足会导致模型M t的分类能力较弱。我们最好利用知识来对目标域T建模,从而提高M t的分类性能。 总体学习目标可以表述为
在这里插入图片描述
其中H表示交叉熵用于测量两个概率分布p和q之间的差异, H ( p , q ) = − ∑ i p ( i ) l o g ( q ( i ) ) H(p,q) = -\sum _i p(i)log(q(i)) H(p,q)=ip(i)log(q(i))

3.设定的方法

ATLA执行对抗性转移学习,以最大程度地减少S和T之间的域转移和分布差异,
在这里插入图片描述
其中|·|D表示域距离反映在鉴别器D的域判断能力中,f表示非对称映射 f : p t → p s f:p_t→p_s fptps。 我们的主要假设是,映射 f 可 以 帮 助 M t 模 拟 M s f可以帮助M_ t模拟M_ s fMtMs的分类特性并显着提高分类能力。
在这里插入图片描述

    • ** A. ATLA的框架**
      图 1 说 明 了 建 议 的 A T L A 框 架 。 我 们 独 立 设 计 了 深 度 学 习 模 型 M s 和 M t , 而 不 会 互 相 干 扰 。 [ 9 ] 指 出 , 残 差 网
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值