调制识别--一些总结与思考(不定时更新中)

我在网上看到很多朋友在调制识别上其实和我一样也有很多问题,这里我将我的一些问题与思考,还有一些研究想法不定时的做一些更新,希望能和大家共同讨论与进步。
-----2020.07.01

----------------2020.08.24---------------------

​ 应该都看了这篇这篇,从CNN[1]和残差网络[2]络进行了初步的探究。目前基于手工提取特征来说,很多论文都是依靠仿真数据,识别率都是接近100%,但是实际中相差是很大的,比如用相似的方法使用标准数据集,方法就不行了,可以看这个2020年比较新一点论文[3],这个是从传统出发,其实也在结合网络做。我认为使用手工提取特征的难点就在如何建立数学模型去表达信号。既然要建立数学模型,那为什么不用深度学习去学习一个合适的数学模型呢。所以现在都倾向于使用深度学习来研究了。

​ 还是拿一个比较新的论文来说吧[4],这个应该是我当前看到讨论情况比较全,比较新的文章了。这篇文章主要从4个方面来讨论,在2016 10a的数据集上做的实验,效果达到93%,这个是当前来说非常高了,基本上把现在讨论的结构都融合进去了。讨论的方向:1.数据;2.特征提取;3.注意力;4.损失函数。数据的话使用生成网络,损失函数是自己构造的,下面主要从第二点和第三点来说吧,我觉得是比较重要的点。

​ 特征提取,我看来是最重要的环节了,这个环节就有点像学习数学模型来拟合数据了,所以是起决定性作用的。特征提取从开始使用的是很普通的卷积神经网络,这个也是受到当时网络结构限制,所以随着残差网络的出现,残差块的应用就比较多了[5] [6] [7] [8]。从这些会议和期刊论文的结果来看,网络结构越深效果会越好,但是,深度是一定范围的,并且越深训练越难,效果反而还下降。因为信号是时序的,所以也有论文使用LSTM在做,其实是想提取时序特征来做,上面提到的考虑比较全的论文[4]是使用CNN+改进的RNN来做,但是他的结构是相当复杂的,其实主要是为了考虑时序信息和空间信息。具体的内容可以看一下这篇论文,东西很多,从文章里面也可以看到使用了两种注意力。
注意力机制,使用的都是软注意力。一个以权重的形式加在层上,一个加在RNN上,这个其实很有意思的,加在层上是重构,加在RNN是关注时序特征重要性。我觉得这个自注意力是做深度学习网络必备的,效果很强,可以看原论文[9]。

[1] T. J. O’shea and N. West, “Radio machine learning dataset generation with gnu radio,” in Proceedings of the GNU Radio Conference, vol. 1, 2016.

[2] N. E. West and T. O’Shea, “Deep architectures for modulation recognition,” in 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)*, pp. 1–6, IEEE, 2017.

[3] Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classifification

[4] S. Chen, Y. Zhang, Z. He, J. Nie, and W. Zhang, “A novel attention cooperative framework for automatic modulation recognition,” IEEE Access*, vol. 8, pp. 15673–15686, 2020.

[5]M. Zhang, Y. Zeng, Z. Han, and Y. Gong, “Automatic modulation recognition using deep learning architectures,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in WirelessCommunications (SPAWC), pp. 1–5, IEEE, 2018.

[6] Y. Zeng, M. Zhang, F. Han, Y. Gong, and J. Zhang, “Spectrum analysis and convolutional neural network for automatic modulation recognition,” IEEE Wireless Communications Letters*, 2019.

[7] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for automatic modulation recognition in cognitive radios,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, 2019.

[8] R. Luo, T. Hu, Z. Tang, C. Wang, X. Gong, and H. Tu, “A radio signal modulation recognition algorithm based on residual networks and attention mechanisms,” arXiv preprint arXiv:1909.12472, 2019.

[9] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in6 Proceedings of the IEEE conference on computer vision and pattern* recognition*, pp. 7132–7141, 2018.

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值