算法相关
轩辕森
一不小心走上了统计学习的不归路。
展开
-
棋盘摆放皇后问题(回溯思想的经典应用)
4皇后和8皇后问题是回溯思想的经典应用之一,其核心思想仍然是解空间树的深度优先搜索。今天在盲写代码过程中居然犯了糊涂而出错,后来静心下来,仔细地回顾了算法的每一步才写出了正确的代码。我的总结是,回溯算法的精髓在于确定解空间树,建立递归的开始与结束条件,为了降低时间复杂度而剪枝,回溯要返回至问题未被修改的状态。明确了上述4个问题就可以顺利地解决问题。解空间树如下,详细代码如下,//原创 2012-08-16 12:27:51 · 1431 阅读 · 0 评论 -
LOUVAIN——社交网络挖掘之大规模网络的社区发现算法
LOUVAIN——社交网络挖掘之大规模网络的社区发现算法===算法来源该算法来源于文章Fast unfolding of communities in large networks,简称为Louvian。算法原理Louvain算法是基于模块度(Modularity)的社区发现算法,该算法在效率和效果上都表现比较好,并且能够发现层次性的社区结构,其优化的目标是最大化整个图属性结构(社区网络)的模块度。原创 2017-04-01 10:06:28 · 4747 阅读 · 0 评论 -
FRAUDAR: Bounding Graph Fraud in the Face of Camouflage 论文理解及算法解析
FRAUDAR: Bounding Graph Fraud in the Face of Camouflage1、一段话概括算法FRAUDAR算法来源于2016年KDD会议,该论文获得了当年的最佳论文奖。该算法要解决的问题是找出站内最善于伪装的虚假账户簇。其原理是虚假账户会通过增加和正常用户的联系来进行伪装,而这些伪装(边)会形成一个很紧密的子网络,这样就可以通过定义一个全局的度量,再移除二部图结构原创 2017-03-06 18:36:43 · 5217 阅读 · 1 评论 -
DBSCAN聚类算法原理
DBSCAND算法的全称是ensity-based spatial clustering of applications with noise (DBSCAN),从原理上讲,该算法属于OPTICS算法的一种特殊情况,而OPTICS算法就是DBSCAND算法的推广。原创 2015-10-30 13:45:30 · 9049 阅读 · 1 评论 -
OPTICS聚类算法原理
OPTICS聚类算法原理基础OPTICS聚类算法是基于密度的聚类算法,全称是Ordering points to identify the clustering structure,目标是将空间中的数据按照密度分布进行聚类,其思想和DBSCAN非常类似,但是和DBSCAN不同的是,OPTICS算法可以获得不同密度的聚类,直接说就是经过OPTICS算法的处理,理论上可以获得任意密度的聚类。原创 2015-10-29 07:42:08 · 26424 阅读 · 2 评论 -
汉诺塔问题的递归解决方法
汉诺塔问题是递归思想的经典应用之一,即有一摞金蝶在塔1上,需要借助塔3把塔1的碟子移动到塔2上,限制是小碟子始终在大碟子上面。这个问题用递归方法解决最为方便,即移动第N个碟子之前需要把塔1上的N-1个碟子移动到塔3上,再把碟子N移动到2上,再把塔3的N-1个碟子移动到塔2上。这样不断地递归就可以了。原创 2012-08-15 14:39:26 · 3404 阅读 · 0 评论 -
CNN基础及开发环境搭建(综合参考)
CNN基础及环境搭建Author:王帅;Mail:mippr11.ws@gmail.com目前,深度学习在解决图像分类,语音识别等问题上获得了已知的最优结果,该系列算法越来越受到学术界和工业界的重视。何为深度学习?一个直观的解释是如果一个机器学习算法在建模的过程中使用了多层的自动特征表示,则该机器学习算法可以称之为深度学习算法,也就是该机器学习算法可以自动地计算特征的特征表示。而卷积神经网原创 2015-02-28 13:13:06 · 10176 阅读 · 0 评论 -
开源机器学习工具scikit-learn入门
开源机器学习工具scikit-learn入门。原创 2015-01-14 15:37:13 · 59550 阅读 · 3 评论 -
【UFLDL】多层神经网络的python实现源码
上周写完了该代码,但是由于没有注意到softmax相关的实现故结果不对,更正后可以得到正确结果,用200幅图片训练200次可以得到90%以上的正确率,参数设置还有待于优化,另外可以考虑用多线程加速,此处目前还有问题(有待于修改,慎用)。推导请参考之前的文章http://blog.csdn.net/xuanyuansen/article/details/41214115。原创 2014-11-27 12:01:48 · 16315 阅读 · 14 评论 -
【UFLDL】多层神经网络
原英文教程地址见:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks本文是在学习该教程时记得笔记,供参考。周末的时候利用空闲时间用python实现了一下,但是训练结果总是不对,原因尚未查清楚,如果公式推导有误请指出,谢谢!原创 2014-11-17 19:22:07 · 4952 阅读 · 1 评论 -
SVM推导过程及SMO详细求解过程(二)
SVM支持向量机的SMO求解过程原创 2014-11-15 22:25:15 · 6013 阅读 · 1 评论 -
SVM推导过程及SMO详细求解过程(一)
《PRML》中SVM支持向量机的推导过程!原创 2014-11-13 14:25:21 · 11114 阅读 · 3 评论 -
《PRML》Logistic回归的IRLS求解
逻辑回归的IRLS求解方法原创 2014-11-12 21:01:10 · 6207 阅读 · 4 评论 -
《PRML》Logistic回归(逻辑回归,LR)的推导
《PRML》中Logistic回归(逻辑回归,LR)的推导原创 2014-11-12 20:39:31 · 9072 阅读 · 2 评论 -
深度学习技术之CAFFE模型转Tensorflow模型
#深度学习技术之CAFFE模型转TF模型####背景最近笔者在工作时遇到一个问题,需要使用已经训练好的CAFFE模型,但是由于CAFFE这个项目已经很旧了,在服务器上未能正确安装,所以只能通过其他途径来使用该模型。一个直观的想法就是将这个CAFFE模型转换为TF模型,索性在gituhb上面发现了这个项目https://github.com/ethereon/caffe-tensorflow。然...原创 2018-10-12 16:15:56 · 4288 阅读 · 0 评论