OPTICS聚类算法原理
基础
OPTICS聚类算法是基于密度的聚类算法,全称是Ordering points to identify the clustering structure,目标是将空间中的数据按照密度分布进行聚类,其思想和DBSCAN非常类似,但是和DBSCAN不同的是,OPTICS算法可以获得不同密度的聚类,直接说就是经过OPTICS算法的处理,理论上可以获得任意密度的聚类。因为OPTICS算法输出的是样本的一个有序队列,从这个队列里面可以获得任意密度的聚类。
定义
OPTICS算法的基础有两点,
- 参数(半径,最少点数):
一个是输入的参数,包括:半径 ε ,和最少点数 MinPts 。
- 定义(核心点,核心距离,可达距离,直接密度可达):
另一个是相关概念的定义:
核心点的定义,如果一个点的半径内包含点的数量不少于最少点数,则该点为核心点,数学描述即
Nε(P)>=MinPts
在这个基础上可以引出核心距离的定义,即对于核心点,距离其第 MinPts