OPTICS聚类算法原理

OPTICS算法是一种基于密度的聚类方法,旨在按照数据的密度分布进行聚类。它与DBSCAN类似,但能捕获不同密度的聚类。算法涉及核心点、核心距离、可达距离等概念,并通过有序队列来维护和处理数据。算法过程包括选择未处理点,更新可达距离和核心距离,将点按顺序加入结果队列,最终根据给定参数ε和MinPts确定聚类。
摘要由CSDN通过智能技术生成

OPTICS聚类算法原理

基础

OPTICS聚类算法是基于密度的聚类算法,全称是Ordering points to identify the clustering structure,目标是将空间中的数据按照密度分布进行聚类,其思想和DBSCAN非常类似,但是和DBSCAN不同的是,OPTICS算法可以获得不同密度的聚类,直接说就是经过OPTICS算法的处理,理论上可以获得任意密度的聚类。因为OPTICS算法输出的是样本的一个有序队列,从这个队列里面可以获得任意密度的聚类。

定义

OPTICS算法的基础有两点,

  • 参数(半径,最少点数):

一个是输入的参数,包括:半径 ε ,和最少点数 MinPts

  • 定义(核心点,核心距离,可达距离,直接密度可达):

另一个是相关概念的定义:
核心点的定义,如果一个点的半径内包含点的数量不少于最少点数,则该点为核心点,数学描述即

Nε(P)>=MinPts

在这个基础上可以引出核心距离的定义,即对于核心点,距离其第 MinPts

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值