常用逻辑用语@命题@猜想@量词@否命题和命题的否定@充要条件的证明步骤

常用逻辑用语@命题@猜想@量词@充要条件的证明步骤

ref

命题

  • 类似“对顶角相等”这样的可供真假判断的陈述语句就是命题
  • 而且,判断为真的语句称为真命题,判断为假的语句称为假命题
  • 数学中的命题,还经常借助符号和式子来表达。
    • 例如,命题“9的算术平方根是3”可表示为“ 9 = 3 \sqrt{9}=3 9 =3
  • 一个命题,要么是真命题,要么是假命题,不能同时既是真命题又是假命题,
  • 也不能模棱两可、无法判断是真命题还是假命题.

猜想

  • 实际上,数学界中,有一些命题至今还没有人能判新真假,比如“每一个不小于6的偶数都是两个奇素数的和”,到目前为止数学家们还不能肯定它是一个真命题还是一个假命题。
    • 通常,未能得到真假判断的命题称为猜想。
    • 前面提到的这个命题是数学家哥德巴赫提出来的,所以称为哥德巴赫猜想,在数学和其他学科的研究中,如果有人能解决一个大家都认为很难的猜想,那是一件非常了不起的事情.

量词

全称命题

  • 一般的,“任意”,“所有”,"每一个"在陈述中表示所述事物的全体,称为全称量词,用符号 ∀ \forall 表示

  • 含有全程量词的命题称为全称量词命题,简称为全称命题

    • 他们形如: 对集合 M 中的所有元素 x , 满足 : r ( x ) 对集合M中的所有元素x,满足:r(x) 对集合M中的所有元素x,满足:r(x)的命题,可以简记为

      • ∀ x ∈ M , r ( x ) \forall x\in{M},r(x) xM,r(x)

      • 例如: ∀ x , x 2 ⩾ 0 \forall {x},x^2\geqslant{0} x,x20

特称命题

  • “存在”,“有”,“至少”,在陈述中表示所述个体或部分,称为存在量词,用符号 ∃ \exist 表示

  • 含有存在量词的命题,称为存在量词命题,或称为特称命题

    • 简记为:

      • ∃ x ∈ M , s ( x ) \exist{x}\in{M},s(x) xM,s(x)

      • 例如: ∃ x ∈ Q , 3 x − 2 = 0 \exist{x}\in{Q},3x-2=0 xQ,3x2=0

命题的否定🎈

  • 命题的否定就是对这个命题真值进行取反;有时简称为"命题否定"

  • 命题的否定,即原命题的真值取反("原命题"与其"命题的否定"具有相反的真假性)

  • 英文资料中,命题的否定称为Negation,国内将negative proposition最为"否命题"而不是命题否定

  • google词典:中的解释:Truth Negation

    • a proposition whose assertion specifically denies the truth of another proposition.

    • “the negation of A is, briefly, ‘not A’”

  • 命题的否定原命题真假性相反。

    • 如果一个命题p是真命题,那么这个命题的否定 ¬ p \neg{p} ¬p就是假命题

    • 反之亦然

全称量词和存在量词的否定

  • 一般地,对命题 p p p加以否定,就得到一个新的命题,记为 ¬ p \neg{p} ¬p
    • 读作:“非 p p p”,或" p 的否定 p的否定 p的否定"
  • 这部分会在逻辑联结词小节再次提到

全称量词命题与存在量词命题的否定

  • 如何对全称量词命题与存在量词命题进行否定?

  • 若记s:“存在整数是自然数”,这个命题的否定是 ¬ s \neg{s} ¬s:"不存在整数是自然数”。

  • 这里的命题s实际上是个存在量词命题,而且可以用符号表示为

    • s : ∃ x ∈ Z , x ∈ N ¬ s : ∀ x ∈ Z , x ∉ N s:\exist{x}\in{Z},x\in{N} \\ \neg{s}:\forall{x}\in{Z},x\notin{N} s:xZ,xN¬s:xZ,x/N

归纳

  • 存在量词命题 p : ∃ x ∈ M , p ( x ) p:\exist{x}\in{M},p(x) p:xM,p(x)的否定是全称量词命题 ¬ p : ∀ x ∈ M , ¬ p ( x ) \neg{p}:\forall{x\in{M}},\neg{p(x)} ¬p:xM,¬p(x)

    • 若记 q = ¬ p q=\neg{p} q=¬p,则p的否定命题可以记为 q : ∀ x ∈ M , q ( x ) q:\forall{x}\in{M},q(x) q:xM,q(x)
  • 全称量词命题 s : ∀ x ∈ M , s ( x ) s:\forall{x}\in{M},s(x) s:xM,s(x)的否定是存在量词命题 ¬ s : ∃ x ∈ M , ¬ s ( x ) \neg{s}:\exist{x}\in{M},\neg{s(x)} ¬s:xM,¬s(x)

四种命题

互逆命题

[原命题original proposition@逆命题inverse proposition]
  • 一般地,对于两个命题,如果一个命题的条件结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。(互逆命题之间的条件和结论是对调位置的)
  • 其中一个命题叫做原命题(original proposition),另一个叫做原命题的逆命题(inverse proposition)
  • 也就是说,如果原命题为" 若 p 则 q 若p则q pq",对应的逆命题为" 若 q 则 p 若q则p qp"
  • 例如
    • 将命题“同位角相等,两直线平行”的条件和结论互换,就得到它的逆命题“两直线平行,同位角相等”。

互否命题negative proposition

  • 一个命题的条件和结论恰好是另一个命题的条件的否定结论的否定,我们把这样的两个命题叫做互否命题。

  • 如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题(negative proposition).

  • 如果原命题为 若 p 则 q 若p则q pq,否命题为 若 ¬ p , 则 ¬ q 若\neg{p},则\neg{q} ¬p,¬q

  • 例如:

    • 如果原命题是“同位角相等,两直线平行”,那么它的否命题是“同位角不相等,两直线不平行”
非运算符 ¬ \neg ¬
  • 为了书写简便,通常将条件p的否定和结论q的否定,分别记为 ¬ p , ¬ q \neg{p},\neg{q} ¬p,¬q,分别读作"非p"和"非q"
  • 非运算符 ¬ \neg ¬也成为否定运算符

逆否命题inverse and negative proposition

小结🎈👺

  • 一般的,原命题,否命题,逆命题,逆否命题间的关系

    • 在这里插入图片描述

    • f ( x ) f(x) f(x)是正弦函数,则 f ( x ) f(x) f(x)是周期函数;(原:真)

      1. f ( x ) f(x) f(x)是周期函数,则 f ( x ) f(x) f(x)是正弦函数;(逆:假)
      2. f ( x ) f(x) f(x)不是正弦函数,则 f ( x ) f(x) f(x)不是周期函数;(否:假)
      3. f ( x ) f(x) f(x)不是周期函数,则 f ( x ) f(x) f(x)不是正弦函数。(逆否:真)
      4. f ( x ) f(x) f(x)是正弦函数,则 f ( x ) f(x) f(x)不是周期函数(原命题的否定:假)
      1. a = 0 , 则 a 2 = 0 ( 原 : 真 ) a=0,则a^2=0(原:真) a=0,a2=0(:)
      2. a 2 = 0 , 则 a = 0 ( 逆 : 真 ) a^2=0,则a=0(逆:真) a2=0,a=0(:)
      3. a ≠ 0 , 则 a 2 ≠ 0 ( 否 : 真 ) a\neq0,则a^2\neq0(否:真) a=0,a2=0(:)
      4. a 2 ≠ 0 a^2\neq{0} a2=0 a ≠ 0 a\neq{0} a=0(逆否:真)
      5. 原命题的否定: a = 0 , 则 a 2 ≠ 0 a=0,则a^2\neq{0} a=0,a2=0(假命题)

四种命题的真假性🎈

  • 一般地,四种命题的真假性,有而且仅有下面四种情况:

    • 原命题逆命题否命题;逆否命题命题的否定
      ;
      ;
      ;
      ;
  • 由于逆命题否命题也是"互为逆否命题",因此这四种命题的真假性之间的关系如下:

    • (1)两个命题互为逆否命题,它们有相同的真假性
    • (2)两个命题为互逆命题互否命题,它们的真假性没有关系
  • 由于原命题和它的逆否命题有相同的真假性

利用逆否命题求解证明问题

  • 所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题

      • 证明:命题A:若 x 2 + y 2 = 0 则 x = y = 0 x^2+y^2=0则x=y=0 x2+y2=0x=y=0
      • 可以考虑证明命题A逆否命题IN(A): 若 x , y 至少一个不等 0 , 则 x 2 + y 2 ≠ 0 若x,y至少一个不等0,则x^2+y^2\neq{0} x,y至少一个不等0,x2+y2=0
      • 证:
        • 若x,y至少一个不为0,(不妨设 x ≠ 0 x\ne{0} x=0),则 x 2 > 0 x^2>0 x2>0,又因为 y 2 ⩾ 0 y^2\geqslant{0} y20从而 x 2 + y 2 > 0 x^2+y^2>0 x2+y2>0
        • 这于已知条件 x 2 + y 2 = 0 x^2+y^2=0 x2+y2=0矛盾,所以x=y=0
        • 所以IN(A)为真命题
        • 所以原命题A也为真命题

区分@否命题@命题的否定@逆命题🎈

  • 假设一个命题包括条件和结论两个部分

    • 否定动作可以对命题执行;也可以对构成命题的条件和结论执行,具有不同的含义
  • 否命题:同时否定原命题的"条件和结论"

  • 命题的否定:只否定该命题的"结论"(是命题结论的否定的简称)

  • Note1:

    • 互为否命题的两个命题真假性没有关系
    • 相互否定的命题具有相反的真假性

充分条件@必要条件

  • 充分条件和必要条件都是对于真命题而言的

条件与结论

  • 在形式命题s:"如果p,那么q"的命题中,p称为命题的条件,q称为命题的结论

    • 上述命题也可以简称:若p则q
    • 如果s是一个真命题,称由p可以推出q,记为: p ⇒ q p\Rightarrow{q} pq
    • 如果s是假命题( ¬ s \neg{s} ¬s是真命题),称p推不出q,记为: p ⇏ q p\nRightarrow{q} pq
    • 条件和结论从形式上看没有明显区别,有时可以交换角色构成逆命题🎈
  • 例如:

    • 命题 s : 若 x = − y , 则 x 2 = y 2 , 该命题是一个真命题 命题 r : 若 x 2 = y 2 则 x = − y , 该命题是一个假命题 可以看出命题 r , s 的条件和结论互换 ! 命题s:若x=-y,则x^2=y^2,该命题是一个真命题 \\命题r:若x^2=y^2则x=-y,该命题是一个假命题 \\可以看出命题r,s的条件和结论互换! 命题s:x=y,x2=y2,该命题是一个真命题命题r:x2=y2x=y,该命题是一个假命题可以看出命题r,s的条件和结论互换!
  • 对于真命题 s : 若 p 则 q s:若p则q s:pq,(即 p ⇒ q p\Rightarrow{q} pq)时,称

    • p是q的充分条件(sufficient condition)
    • q是p的必要条件(necessary condition)
    • q是p可推出的一个结论
4种等价形式🎈
  • 以下四种形式的表达,讲的是同一个逻辑关系,只是说法不同而已
    • “如果p,那么g”是真命题,

    • p ⇒ q p\Rightarrow{q} pq,(p推出q)

    • p是q的充分条件

      • 这不同于说q的充分条件是p.例如,1是小于2的数,但小于2的数不一定是1(还可以是其他数)
    • q是p的必要条件

      • 也不同于说p的必要条件是q
不常见说法
  • p的必要条件是q,
    • 常说"q是p的必要条件(之一)"
  • p的充分条件是q,
    • 常说:q是p的(一个)充分条件
推出@被推出🎈
  • 对于真命题s:“ p ⇒ q p\Rightarrow{q} pq”,可以将 ⇒ \Rightarrow 称为推出
    • 即由p推出q
    • 紧条件p可以推出松条件q,
    • 紧条件的必要条件是松条件
      • 紧条件对应充分条件
      • 松条件对应必要条件
      • 可以用Venn图描述. Q ⊆ P Q\subseteq{P} QP,则P是Q的必要条件,Q是P的充分条件

充要条件@等价@当且仅当🎈

  • 如果" p ⇒ q 且 q ⇒ p p\Rightarrow{q}且q\Rightarrow{p} pqqp"则称p是q充分必要条件(充要条件);

    • 此时也称"p与q等价",可以记为 p ⇔ q p\Leftrightarrow{q} pq
    • p ⇔ q p\Leftrightarrow{q} pq,则p,q互为充要条件
    • q 当且仅当 p q当且仅当p q当且仅当p
  • 例如:

    • x ∈ Q ⇒ x ∈ R 且 x ∈ R ⇏ x ∈ Q 记 p : x ∈ Q , q : x ∈ R x\in{Q}\Rightarrow{x\in{R}}且 x\in{R}\nRightarrow{x\in{Q}} \\记p:x\in{Q},q:x\in{R} xQxRxRxQp:xQ,q:xR

    • p是q的充分不必要

    • q是p的必要不充分条件

充要条件类证明题的证明步骤😎

  • 若要证明:命题s:p是q的充要条件
    • 将上述命题s用符号表示: p ⇒ q , q ⇒ p p\Rightarrow{q},q\Rightarrow{p} pq,qp,只需要从上述两个方向证明即可
  • 对于等价的p,q,它们的充分性和必要性的区分不是必须的
    • 充分性证明: p ⇒ q p\Rightarrow{q} pq
    • 必要性证明: q ⇒ p q\Rightarrow{p} qp
  • Note
    • p是q的充分条件(若p则q)
    • p是q的必要条件(若q则p)
  • 判断p是否是q的充分条件,等价于判断: p ⇒ q p\Rightarrow{q} pq是否成立
  • 判断p是否是q的必要条件,等价于判断:p是否能够由q推出( q ⇒ p q\Rightarrow{p} qp是否成立)
  • 另一类常用的描述方式是:“q的充要条件是p
    • 这种方式将结论放在前面,将条件放在后面,在证明的时候可以:
      • 先证明条件的充分性( p ⇒ q p\Rightarrow{q} pq)
      • 再证明条件的必要性( q ⇒ p q\Rightarrow{p} qp)

逻辑联结词🎈

  • 且:记为 ∧ \land

  • 或:记为 ∨ \lor

  • 否(非):记为 ¬ \neg ¬

    • 一般地,对一个命题p的全盘否定,就得到一个新命题,记为 ¬ p \neg{p} ¬p,(区别于否命题)
    • p p p ¬ p \neg{p} ¬p具有相反的真假性( p ∧ ¬ p p\land{\neg{p}} p¬p必为假命题, p ∨ ¬ p p\lor{\neg{p}} p¬p必为真命题)
  • p , q p,q p,q都是真命题时, p ∧ q p\land{q} pq时真命题

  • p , q p,q p,q中至少一个是假命题,则 p ∧ q p\land{q} pq是假命题

  • 当p,q中有一个真命题,则 p ∧ q p\land{q} pq是真命题

  • p , q p,q p,q都是假命题时, p ∨ q p\lor{q} pq为假

  • pq p ∧ q p\land{q} pq p ∨ q p\lor{q} pq
    TTTT
    TFFT
    FTFT
    FFFF
    • T代表真命题,F代表假命题

且或非@交并补

  • 且,或,非分别对应的是集合中的交,并,补

逻辑用语结构总结

  • 常用逻辑用语
    • 命题及其关系
    • 推到关系
      • 充分条件
      • 必要条件
      • 充要条件
    • 简单逻辑联结词
    • 量词
      • 全称量词
      • 存在量词
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值