丢失的数字算法(leetcode第268题)

题目描述:

给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。

 

示例 1:

输入:nums = [3,0,1]
输出:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 2:

输入:nums = [0,1]
输出:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 3:

输入:nums = [9,6,4,2,3,5,7,0,1]
输出:8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范围 [0,9] 内。8 是丢失的数字,因为它没有出现在 nums 中。
示例 4:

输入:nums = [0]
输出:1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范围 [0,1] 内。1 是丢失的数字,因为它没有出现在 nums 中。
 

提示:

n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums 中的所有数字都 独一无二

算法一:

思路:

利用hash表,标记每个数,之后遍历筛出未被标记的数

代码实现:
# include<string.h>
int missingNumber(int* nums, int numsSize) {
    int hash[10000];//创建hash表,记录次数
    int i;
    memset(hash,0,sizeof(hash));//初始化
    for(i=0;i<numsSize;i++){
        hash[nums[i]]=1;//标记
    }
    for(i=0;i<numsSize;i++){
        if(hash[i]==0){//未被标记,跳出循环
            break;
        }
    }
    return i;
}

算法二:

思路:

使用位运算中的异或,重复的数互相抵消,留下未被抵消的数

代码实现:
int missingNumber(int* nums, int numsSize) {
        int res=0;
        for(int i=0; i<numsSize;i++)
            res^=(i+1)^nums[i];//重复可以抵消
        return res;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值