题目描述:
给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。
示例 1:
输入:nums = [3,0,1]
输出:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 2:
输入:nums = [0,1]
输出:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 3:
输入:nums = [9,6,4,2,3,5,7,0,1]
输出:8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范围 [0,9] 内。8 是丢失的数字,因为它没有出现在 nums 中。
示例 4:
输入:nums = [0]
输出:1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范围 [0,1] 内。1 是丢失的数字,因为它没有出现在 nums 中。
提示:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums 中的所有数字都 独一无二
算法一:
思路:
利用hash表,标记每个数,之后遍历筛出未被标记的数
代码实现:
# include<string.h>
int missingNumber(int* nums, int numsSize) {
int hash[10000];//创建hash表,记录次数
int i;
memset(hash,0,sizeof(hash));//初始化
for(i=0;i<numsSize;i++){
hash[nums[i]]=1;//标记
}
for(i=0;i<numsSize;i++){
if(hash[i]==0){//未被标记,跳出循环
break;
}
}
return i;
}
算法二:
思路:
使用位运算中的异或,重复的数互相抵消,留下未被抵消的数
代码实现:
int missingNumber(int* nums, int numsSize) {
int res=0;
for(int i=0; i<numsSize;i++)
res^=(i+1)^nums[i];//重复可以抵消
return res;
}