树木发芽检测系统源码分享

树木发芽检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球气候变化和生态环境的不断恶化,植物生长状况的监测与分析变得愈发重要。树木作为生态系统的重要组成部分,其发芽情况不仅直接影响到森林的生长和恢复能力,还与生物多样性、碳循环以及水文过程等密切相关。因此,及时、准确地检测树木的发芽状态,能够为生态保护、森林管理和可持续发展提供重要的数据支持。然而,传统的人工监测方法往往耗时耗力,且受限于人力资源和天气条件,难以实现大规模、高频率的监测。

近年来,计算机视觉技术的快速发展为植物监测提供了新的解决方案。尤其是基于深度学习的目标检测算法,如YOLO(You Only Look Once)系列,因其高效性和准确性而受到广泛关注。YOLOv8作为该系列的最新版本,具备了更强的特征提取能力和实时处理能力,能够在复杂的环境中快速识别和定位目标。基于YOLOv8的树木发芽检测系统,利用其高效的目标检测能力,能够实现对树木发芽状态的自动化监测,极大地提高了监测效率和准确性。

本研究旨在构建一个基于改进YOLOv8的树木发芽检测系统,利用收集到的4258张树木发芽图像,针对“dardo”这一类别进行深度学习模型的训练与优化。该数据集的规模和多样性为模型的训练提供了良好的基础,能够有效提升模型的泛化能力和鲁棒性。通过对数据集的分析,我们可以发现,树木发芽的形态特征具有一定的规律性和多样性,如何在复杂的背景下准确识别这些特征,是本研究的一个重要挑战。

本研究的意义不仅在于提升树木发芽检测的技术水平,更在于为生态监测和森林管理提供科学依据。通过建立高效的检测系统,能够实现对树木发芽情况的实时监测,及时发现生态变化,进而采取相应的保护措施。此外,该系统的成功应用也为其他植物的生长监测提供了借鉴,推动了植物监测技术的进一步发展。

总之,基于改进YOLOv8的树木发芽检测系统的研究,不仅具有重要的理论价值,还有助于实际应用中生态保护和资源管理的优化,具有广泛的社会和经济意义。通过本研究,我们期望能够为实现可持续发展目标贡献一份力量,为生态环境的保护与恢复提供强有力的技术支持。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 1
names: [‘dardo’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们采用了名为“buds”的数据集,以支持改进YOLOv8的树木发芽检测系统的训练与评估。该数据集专注于树木发芽阶段的图像数据,旨在为植物生长监测、生态研究及农业管理提供高效的技术支持。数据集的设计考虑到了实际应用中的多样性和复杂性,确保了所收集图像的代表性和实用性。

“buds”数据集包含了一个类别,具体为“dardo”,这一类别代表了特定类型的树木芽生长状态。通过对这一类别的精细化标注,数据集为模型提供了明确的学习目标,使得YOLOv8能够在检测和识别树木发芽时更加准确和高效。树木的芽是植物生长的重要标志,及时准确地检测芽的状态不仅有助于科学研究,也对农业生产的决策具有重要意义。

在数据集的构建过程中,研究团队收集了大量的图像样本,这些样本来自不同的生长环境和气候条件,以确保数据的多样性和代表性。图像的拍摄时间、光照条件以及背景环境均有所不同,这样的设计使得模型在训练过程中能够学习到更为广泛的特征,从而提升其在实际应用中的鲁棒性。每张图像都经过了严格的标注,确保“dardo”类别的芽体特征能够被清晰地识别和提取。

此外,数据集还包含了不同生长阶段的芽图像,这些阶段包括初期发芽、成熟芽和即将开放的芽等。通过这样的多样化标注,研究人员希望模型能够学习到芽的不同形态变化,进而提高其在动态环境中的检测能力。这种阶段性的细分不仅有助于提高模型的准确性,也为后续的生长监测提供了更为详细的数据支持。

在数据集的使用过程中,研究团队将采用数据增强技术,以进一步提升模型的泛化能力。通过对原始图像进行旋转、缩放、裁剪等操作,研究人员能够生成更多的训练样本,从而减少模型对特定样本的依赖,增强其在新环境下的适应性。这一过程不仅能够提升模型的性能,还能有效避免过拟合现象的发生。

综上所述,“buds”数据集为改进YOLOv8的树木发芽检测系统提供了坚实的基础。通过精心设计的类别标注和丰富的图像样本,该数据集不仅有助于提升模型的检测精度,也为后续的研究提供了宝贵的数据资源。随着对该数据集的深入分析和应用,研究团队期待能够在树木生长监测领域取得更为显著的成果,为生态保护和可持续发展贡献力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8是由Ultralytics公司于2023年发布的最新目标检测算法,作为YOLO系列的第八个版本,它在目标检测领域中展示了更高的效率和准确性。YOLOv8n是该系列中的一个轻量级版本,采用了一系列创新的设计理念和技术改进,使其在保持高性能的同时,显著降低了计算复杂度。YOLOv8的核心思想在于通过优化网络结构和引入新的损失函数,提升目标检测的速度和精度。

首先,YOLOv8n在骨干网络中继续采用跨级结构(Cross Stage Partial, CSP),这一设计理念的核心在于通过将特征提取过程分为两部分,分别进行卷积和连接,从而有效地减轻了网络的计算负担。具体而言,YOLOv8n将YOLOv5中的C3模块替换为更加轻量的C2f模块,C2f模块通过减少参数量和计算量,进一步提高了模型的推理速度。这种优化不仅保留了特征提取的有效性,还在一定程度上增强了模型的泛化能力。

在特征提取的末尾,YOLOv8n引入了空间金字塔池化(SPPF)模块,该模块通过多尺度特征融合的方式,进一步提升了模型在不同尺度目标检测中的表现。SPPF模块的设计理念是通过对特征图进行多层次的池化操作,提取出更为丰富的上下文信息,从而增强了模型对复杂场景的适应能力。

YOLOv8n的颈部网络采用了PAN-FPN(Path Aggregation Network - Feature Pyramid Network)结构,这一结构的设计旨在实现特征的多尺度融合。PAN-FPN通过有效地连接不同层次的特征图,使得模型能够综合利用来自不同层次的信息,从而提升目标检测的准确性。通过这种特征融合策略,YOLOv8n能够在处理小目标和大目标时,均表现出色,展现出其在复杂场景下的强大能力。

在检测网络方面,YOLOv8n采用了Anchor-Free的检测方式,这一设计理念的核心在于消除了对预定义锚框的依赖,使得模型在目标检测时能够更加灵活。传统的锚框方法往往需要手动调整和优化,而YOLOv8n通过引入解耦头结构,使得模型能够自动学习目标的特征,从而提高了检测的准确性和效率。解耦头结构的设计使得每个检测头能够独立地处理不同的任务,如分类和回归,从而实现更为精细的目标检测。

在损失函数的设计上,YOLOv8n引入了新的损失策略,包括变焦损失、数据平均保真度损失和完美交并比损失。这些损失函数的引入使得模型在训练过程中能够更加准确地优化目标检测的性能。变焦损失通过对不同尺度目标的关注程度进行调整,使得模型在面对不同大小的目标时,能够保持较高的检测精度。而数据平均保真度损失和完美交并比损失则进一步增强了模型对边界框的回归能力,使得预测的边界框更加接近真实值。

综上所述,YOLOv8n通过一系列创新的设计和技术改进,在目标检测领域中展现了其独特的优势。其轻量化的特征提取网络、灵活的Anchor-Free检测方式以及先进的损失函数设计,使得YOLOv8n不仅在速度上具有显著优势,同时在准确性上也达到了新的高度。这些优点使得YOLOv8n成为当前目标检测领域中最为流行和成功的模型之一,广泛应用于各种实际场景中。

在实际应用中,YOLOv8n的高效性和准确性使其成为许多计算资源受限的设备上的理想选择。无论是在移动设备、边缘计算平台,还是在需要实时处理的监控系统中,YOLOv8n都能够以较低的延迟和较高的准确率完成目标检测任务。此外,YOLOv8n的原生支持自定义数据集的能力,使得用户能够根据具体应用场景进行模型的微调和优化,从而实现更为精准的目标检测。

随着YOLOv8n的不断发展和完善,未来的目标检测技术将更加注重模型的轻量化和高效性,以适应日益增长的应用需求。YOLOv8n的成功不仅为目标检测领域带来了新的思路,也为后续的研究和应用提供了宝贵的经验和借鉴。通过对YOLOv8n的深入研究和改进,研究者们将能够进一步推动目标检测技术的发展,为各类智能应用的实现奠定坚实的基础。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 code\ultralytics\data\base.py

以下是经过精简和注释的核心代码部分,主要集中在 BaseDataset 类的关键功能上:

import glob
import os
import random
from pathlib import Path
import numpy as np
import cv2
from torch.utils.data import Dataset

class BaseDataset(Dataset):
    """
    基础数据集类,用于加载和处理图像数据。

    参数:
        img_path (str): 图像文件夹的路径。
        imgsz (int, optional): 图像大小,默认为640。
        augment (bool, optional): 是否应用数据增强,默认为True。
        classes (list): 包含的类别列表,默认为None。
        fraction (float): 使用的数据集比例,默认为1.0(使用所有数据)。
    """

    def __init__(self, img_path, imgsz=640, augment=True, classes=None, fraction=1.0):
        """初始化BaseDataset,配置选项。"""
        super().__init__()
        self.img_path = img_path  # 图像路径
        self.imgsz = imgsz  # 图像大小
        self.augment = augment  # 是否进行数据增强
        self.im_files = self.get_img_files(self.img_path)  # 获取图像文件列表
        self.labels = self.get_labels()  # 获取标签
        self.update_labels(include_class=classes)  # 更新标签以包含指定类别
        self.ni = len(self.labels)  # 数据集中图像数量

    def get_img_files(self, img_path):
        """读取图像文件。"""
        f = []  # 存储图像文件
        # 遍历给定路径,获取所有图像文件
        for p in img_path if isinstance(img_path, list) else [img_path]:
            p = Path(p)  # 使用Path处理路径
            if p.is_dir():  # 如果是目录
                f += glob.glob(str(p / "**" / "*.*"), recursive=True)  # 递归获取所有文件
            elif p.is_file():  # 如果是文件
                with open(p) as t:
                    t = t.read().strip().splitlines()  # 读取文件内容
                    parent = str(p.parent) + os.sep
                    f += [x.replace("./", parent) if x.startswith("./") else x for x in t]  # 替换路径
            else:
                raise FileNotFoundError(f"{p} 不存在")
        # 过滤并排序图像文件
        im_files = sorted(x for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
        assert im_files, f"在 {img_path} 中未找到图像"
        if self.fraction < 1:
            im_files = im_files[: round(len(im_files) * self.fraction)]  # 根据比例截取图像文件
        return im_files

    def update_labels(self, include_class):
        """更新标签,仅包含指定类别(可选)。"""
        for i in range(len(self.labels)):
            if include_class is not None:
                cls = self.labels[i]["cls"]
                bboxes = self.labels[i]["bboxes"]
                # 过滤标签
                j = np.isin(cls, include_class)
                self.labels[i]["cls"] = cls[j]
                self.labels[i]["bboxes"] = bboxes[j]

    def load_image(self, i):
        """加载数据集中索引为 'i' 的图像,返回图像及其原始和调整后的尺寸。"""
        im = cv2.imread(self.im_files[i])  # 读取图像
        if im is None:
            raise FileNotFoundError(f"未找到图像 {self.im_files[i]}")
        # 调整图像大小
        im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)
        return im, im.shape[:2]  # 返回图像和尺寸

    def __getitem__(self, index):
        """返回给定索引的图像和标签信息。"""
        label = self.labels[index]  # 获取标签
        label["img"], label["ori_shape"] = self.load_image(index)  # 加载图像
        return label  # 返回标签信息

    def __len__(self):
        """返回数据集中标签的数量。"""
        return len(self.labels)

    def get_labels(self):
        """
        用户可以自定义标签格式。

        注意:
            确保输出是一个字典,包含以下键:
            - im_file: 图像文件路径
            - shape: 图像形状 (高度, 宽度)
            - cls: 类别
            - bboxes: 边界框
        """
        raise NotImplementedError  # 需要用户实现

代码说明:

  1. 类的定义BaseDataset 继承自 Dataset,用于处理图像数据集。
  2. 初始化方法:接收图像路径、图像大小、数据增强标志、类别等参数,并初始化相关属性。
  3. 获取图像文件get_img_files 方法从指定路径读取图像文件,支持目录和文件列表。
  4. 更新标签update_labels 方法根据指定类别更新标签信息。
  5. 加载图像load_image 方法根据索引加载图像,并调整其大小。
  6. 数据集长度__len__ 方法返回数据集中标签的数量。
  7. 获取标签get_labels 方法是一个抽象方法,用户需要实现自定义标签格式。

这个简化版本保留了数据集的核心功能,便于理解和使用。

这个文件是Ultralytics YOLO项目中的一个基础数据集类BaseDataset,用于加载和处理图像数据。该类继承自PyTorch的Dataset,提供了一系列方法和属性,以便于在训练深度学习模型时高效地管理图像数据。

在初始化方法__init__中,用户可以传入多个参数,例如图像路径、图像大小、是否使用缓存、数据增强选项、超参数、批次大小等。类会根据传入的图像路径读取图像文件,并获取相应的标签数据。它还会根据需要更新标签以包含特定的类别,并计算数据集中图像的数量。

get_img_files方法用于读取指定路径下的图像文件,支持目录和文件两种输入方式。它会返回一个包含所有有效图像文件路径的列表,并确保只返回支持的图像格式。如果指定了数据集的使用比例(fraction),则会根据该比例截取图像列表。

update_labels方法用于更新标签,以仅包含用户指定的类别。如果设置了单类训练(single_cls),则所有标签的类别都将被设置为0。

load_image方法根据索引加载单张图像,并在需要时进行图像的缩放和缓存。它支持长边缩放到指定的图像大小,同时保持图像的宽高比。若启用了数据增强,加载的图像会被存储在一个缓冲区中,以便后续使用。

cache_imagescache_images_to_disk方法用于将图像缓存到内存或磁盘,以加快后续的加载速度。check_cache_ram方法会检查当前系统的可用内存,以决定是否可以将图像缓存到内存中。

set_rectangle方法用于设置YOLO检测的边界框形状为矩形,以适应不同图像的长宽比。

__getitem__get_image_and_label方法用于根据索引返回图像及其对应的标签信息,__len__方法返回数据集中标签的数量。

build_transformsget_labels方法是留给用户自定义的,允许用户根据自己的需求实现数据增强和标签格式的处理。

总体而言,这个类为YOLO模型的训练提供了一个灵活且高效的数据加载和处理框架,支持多种自定义选项,以适应不同的训练需求。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\ops_dcnv3\functions\dcnv3_func.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd

class DCNv3Function(Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, input, offset, mask, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group, group_channels, offset_scale, im2col_step, remove_center):
        # 保存前向传播所需的参数到上下文中
        ctx.kernel_h = kernel_h
        ctx.kernel_w = kernel_w
        ctx.stride_h = stride_h
        ctx.stride_w = stride_w
        ctx.pad_h = pad_h
        ctx.pad_w = pad_w
        ctx.dilation_h = dilation_h
        ctx.dilation_w = dilation_w
        ctx.group = group
        ctx.group_channels = group_channels
        ctx.offset_scale = offset_scale
        ctx.im2col_step = im2col_step
        ctx.remove_center = remove_center

        # 准备输入参数
        args = [
            input, offset, mask, kernel_h,
            kernel_w, stride_h, stride_w, pad_h,
            pad_w, dilation_h, dilation_w, group,
            group_channels, offset_scale, ctx.im2col_step
        ]
        if remove_center:
            args.append(remove_center)

        # 调用DCNv3的前向函数
        output = DCNv3.dcnv3_forward(*args)
        ctx.save_for_backward(input, offset, mask)  # 保存输入以备后向传播使用

        return output

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output):
        # 从上下文中恢复保存的输入
        input, offset, mask = ctx.saved_tensors

        # 准备后向传播所需的参数
        args = [
            input, offset, mask, ctx.kernel_h,
            ctx.kernel_w, ctx.stride_h, ctx.stride_w, ctx.pad_h,
            ctx.pad_w, ctx.dilation_h, ctx.dilation_w, ctx.group,
            ctx.group_channels, ctx.offset_scale, grad_output.contiguous(), ctx.im2col_step
        ]
        if ctx.remove_center:
            args.append(ctx.remove_center)

        # 调用DCNv3的后向函数,计算梯度
        grad_input, grad_offset, grad_mask = DCNv3.dcnv3_backward(*args)

        return grad_input, grad_offset, grad_mask, None, None, None, None, None, None, None, None, None, None, None, None, None

def dcnv3_core_pytorch(input, offset, mask, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group, group_channels, offset_scale, remove_center):
    # 输入参数的填充
    input = F.pad(input, [0, 0, pad_h, pad_h, pad_w, pad_w])
    N_, H_in, W_in, _ = input.shape
    _, H_out, W_out, _ = offset.shape

    # 获取参考点
    ref = _get_reference_points(input.shape, input.device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h, pad_w, stride_h, stride_w)
    # 生成膨胀网格
    grid = _generate_dilation_grids(input.shape, kernel_h, kernel_w, dilation_h, dilation_w, group, input.device)

    # 计算采样位置
    sampling_locations = (ref + grid * offset_scale).repeat(N_, 1, 1, 1, 1)
    if remove_center:
        sampling_locations = remove_center_sampling_locations(sampling_locations, kernel_w=kernel_w, kernel_h=kernel_h)
    sampling_locations = sampling_locations.flatten(3, 4)  # 展平最后两个维度

    # 进行双线性插值采样
    input_ = input.view(N_, H_in * W_in, group * group_channels).transpose(1, 2).reshape(N_ * group, group_channels, H_in, W_in)
    sampling_grid_ = sampling_grids.view(N_, H_out * W_out, group, P_, 2).transpose(1, 2).flatten(0, 1)
    sampling_input_ = F.grid_sample(input_, sampling_grid_, mode='bilinear', padding_mode='zeros', align_corners=False)

    # 计算输出
    mask = mask.view(N_, H_out * W_out, group, P_).transpose(1, 2).reshape(N_ * group, 1, H_out * W_out, P_)
    output = (sampling_input_ * mask).sum(-1).view(N_, group * group_channels, H_out * W_out)

    return output.transpose(1, 2).reshape(N_, H_out, W_out, -1).contiguous()

代码核心部分说明:

  1. DCNv3Function类:定义了一个自定义的PyTorch函数,包含前向和后向传播的实现。

    • forward方法:执行前向传播,计算输出,并保存必要的输入以便后向传播。
    • backward方法:计算梯度,使用保存的输入和输出的梯度。
  2. dcnv3_core_pytorch函数:实现了DCNv3的核心逻辑,主要包括:

    • 输入的填充。
    • 计算参考点和膨胀网格。
    • 计算采样位置并进行双线性插值。
    • 计算最终输出。

这些部分是实现DCNv3模块的核心,涉及到深度学习中的自定义操作和前向后向传播的实现。

该文件是一个实现了DCNv3(Deformable Convolutional Networks v3)功能的PyTorch自定义操作的代码。DCNv3是一种改进的可变形卷积,能够在卷积过程中根据输入特征的形状动态调整卷积核的位置,从而提高模型的表达能力。

代码的开头部分引入了一些必要的库,包括PyTorch及其功能模块。接着,尝试导入DCNv3库并获取其版本信息,以便在后续代码中进行版本检查。

DCNv3Function类继承自PyTorch的Function类,定义了前向传播和反向传播的操作。前向传播使用@custom_fwd装饰器,允许用户自定义前向计算的过程。它接收多个参数,包括输入特征图、偏移量、掩码、卷积核的尺寸、步幅、填充、扩张等信息,并调用DCNv3库中的dcnv3_forward函数来执行可变形卷积操作。前向传播完成后,保存输入、偏移量和掩码以供反向传播使用。

反向传播使用@once_differentiable和@custom_bwd装饰器,确保在反向传播过程中只计算一次梯度。它从上下文中恢复保存的张量,并调用DCNv3库中的dcnv3_backward函数来计算输入、偏移量和掩码的梯度。

symbolic方法用于在ONNX导出时定义DCNv3操作的符号表示,确保模型可以在不同的框架中进行迁移。

接下来的几个函数实现了一些辅助功能。_get_reference_points函数计算参考点,用于生成可变形卷积的采样位置。_generate_dilation_grids函数生成扩张网格,用于确定采样位置的偏移。remove_center_sampling_locations函数用于去除中心采样位置,以便在特定情况下优化卷积操作。

dcnv3_core_pytorch函数是DCNv3的核心实现,负责执行可变形卷积的具体计算。它首先对输入进行填充,然后计算参考点和扩张网格。接着,根据偏移量和掩码生成采样位置,并使用F.grid_sample函数进行采样,最后将结果与掩码相乘以得到最终输出。

整体来看,该文件实现了DCNv3的前向和反向传播功能,并提供了一些辅助函数,以便在PyTorch中高效地执行可变形卷积操作。该功能在目标检测、图像分割等计算机视觉任务中具有重要应用。

11.3 ui.py
import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    if result.returncode != 0:
        print("脚本运行出错。")


# 实例化并运行应用
if __name__ == "__main__":
    # 指定您的脚本路径
    script_path = "web.py"  # 这里可以直接指定脚本路径

    # 运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • import sys:导入 sys 模块,用于访问与 Python 解释器紧密相关的变量和函数。
    • import subprocess:导入 subprocess 模块,用于执行外部命令和程序。
  2. 定义函数 run_script

    • 该函数接收一个参数 script_path,表示要运行的 Python 脚本的路径。
    • 函数内部首先获取当前 Python 解释器的路径,使用 sys.executable
  3. 构建命令

    • 使用 f-string 格式化字符串,构建运行命令。命令的格式为:"{python_path}" -m streamlit run "{script_path}",这表示使用当前 Python 解释器运行 Streamlit 应用。
  4. 执行命令

    • 使用 subprocess.run 执行构建的命令。shell=True 表示在 shell 中执行命令。
    • 检查命令的返回码,如果不为 0,表示脚本运行出错,打印错误信息。
  5. 主程序入口

    • 使用 if __name__ == "__main__": 判断当前模块是否为主程序。
    • 指定要运行的脚本路径为 web.py
    • 调用 run_script 函数,传入脚本路径以执行该脚本。

这个程序文件的主要功能是使用当前的 Python 环境来运行一个指定的脚本,具体是一个名为 web.py 的文件。程序首先导入了必要的模块,包括 sysossubprocess,这些模块提供了与系统交互的功能。特别是 subprocess 模块用于在 Python 中执行外部命令。

run_script 函数中,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。接着,构建一个命令字符串,这个命令会调用 streamlit 来运行指定的脚本。streamlit 是一个用于构建数据应用的库,命令的格式是 python -m streamlit run "script_path",其中 script_path 是传入的脚本路径。

然后,使用 subprocess.run 方法执行这个命令。shell=True 参数允许在 shell 中执行命令。执行完后,检查返回码 result.returncode,如果不为零,表示脚本运行出错,程序会打印出错误信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保当这个文件作为主程序运行时,以下代码才会被执行。这里指定了要运行的脚本路径 web.py,并调用 run_script 函数来执行它。脚本路径通过 abs_path 函数获取,确保路径是绝对路径。

总的来说,这个程序的目的是方便地在当前 Python 环境中运行一个 Streamlit 应用,确保用户可以通过简单的调用来启动和测试他们的应用。

11.4 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类扩展自BaseTrainer类,用于基于检测模型的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,可以是'train'或'val',用户可以为每种模式自定义不同的增强。
            batch (int, optional): 批次大小,适用于'rect'模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式是'train'或'val'
        with torch_distributed_zero_first(rank):  # 在分布式训练中,仅初始化数据集*.cache一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        if getattr(dataset, "rect", False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
            shuffle = False
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对一批图像进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择新的图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:  # 如果缩放因子不为1
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值缩放
            batch["img"] = imgs  # 更新图像
        return batch

    def set_model_attributes(self):
        """设置模型的属性,包括类别数量和名称。"""
        self.model.nc = self.data["nc"]  # 将类别数量附加到模型
        self.model.names = self.data["names"]  # 将类别名称附加到模型
        self.model.args = self.args  # 将超参数附加到模型

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def get_validator(self):
        """返回YOLO模型验证器。"""
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"  # 定义损失名称
        return yolo.detect.DetectionValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

代码说明

  1. DetectionTrainer类:这是一个用于训练YOLO检测模型的类,继承自BaseTrainer
  2. build_dataset方法:根据给定的图像路径和模式(训练或验证)构建YOLO数据集。
  3. get_dataloader方法:构造并返回数据加载器,负责数据的加载和预处理。
  4. preprocess_batch方法:对图像批次进行预处理,包括归一化和多尺度调整。
  5. set_model_attributes方法:设置模型的类别数量和名称。
  6. get_model方法:返回一个YOLO检测模型,可以选择加载预训练权重。
  7. get_validator方法:返回用于验证模型性能的验证器。
  8. plot_training_samples方法:绘制训练样本及其注释,便于可视化训练过程。

这个程序文件 train.py 是一个用于训练目标检测模型的代码,主要基于 YOLO(You Only Look Once)架构。代码首先导入了一些必要的库和模块,包括数学运算、随机数生成、深度学习框架 PyTorch 以及一些来自 Ultralytics 的工具和函数。

在文件中,定义了一个名为 DetectionTrainer 的类,它继承自 BaseTrainer 类,专门用于基于检测模型的训练。该类的构造函数接受一些参数,例如模型路径、数据集配置文件和训练的轮数等。通过这些参数,用户可以方便地创建一个训练器实例并开始训练。

DetectionTrainer 类中包含多个方法。build_dataset 方法用于构建 YOLO 数据集,接受图像路径、模式(训练或验证)和批次大小作为参数。它会根据模型的步幅(stride)计算合适的大小,并调用 build_yolo_dataset 函数来生成数据集。

get_dataloader 方法用于构建数据加载器,确保在分布式训练时只初始化一次数据集。它会根据模式决定是否打乱数据,并设置工作线程的数量。

preprocess_batch 方法负责对输入的图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。它还支持多尺度训练,通过随机选择图像大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。这些信息对于模型的训练和评估至关重要。

get_model 方法返回一个 YOLO 检测模型的实例,并可以选择加载预训练权重。get_validator 方法返回一个用于模型验证的验证器实例,负责计算和记录损失。

label_loss_items 方法用于返回带有标签的训练损失项的字典,这在目标检测和分割任务中是必要的。progress_string 方法生成一个格式化的字符串,显示训练进度,包括当前轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,便于可视化训练过程中的数据。plot_metrics 方法从 CSV 文件中绘制训练指标,生成可视化结果。最后,plot_training_labels 方法创建一个带有标签的训练图,展示训练集中所有的边界框和类别信息。

总体而言,这个文件提供了一个完整的训练框架,涵盖了数据集构建、数据加载、模型训练、损失计算和结果可视化等多个方面,为使用 YOLO 进行目标检测提供了便利的工具。

11.5 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\tiny_encoder.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Conv2d_BN(torch.nn.Sequential):
    """一个顺序容器,执行2D卷积操作,后接批量归一化。"""

    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1):
        """初始化卷积层和批量归一化层。"""
        super().__init__()
        # 添加卷积层
        self.add_module('c', torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False))
        # 添加批量归一化层
        bn = torch.nn.BatchNorm2d(out_channels)
        # 初始化批量归一化层的权重和偏置
        torch.nn.init.constant_(bn.weight, bn_weight_init)
        torch.nn.init.constant_(bn.bias, 0)
        self.add_module('bn', bn)

class PatchEmbed(nn.Module):
    """将图像嵌入为补丁,并将其投影到指定的嵌入维度。"""

    def __init__(self, in_chans, embed_dim, resolution, activation):
        """初始化补丁嵌入层。"""
        super().__init__()
        img_size = (resolution, resolution)  # 假设输入为正方形图像
        self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)  # 每个补丁的分辨率
        self.in_chans = in_chans  # 输入通道数
        self.embed_dim = embed_dim  # 嵌入维度
        n = embed_dim
        # 定义卷积和激活的顺序
        self.seq = nn.Sequential(
            Conv2d_BN(in_chans, n // 2, 3, 2, 1),  # 第一个卷积层
            activation(),  # 激活函数
            Conv2d_BN(n // 2, n, 3, 2, 1),  # 第二个卷积层
        )

    def forward(self, x):
        """通过补丁嵌入层的序列操作处理输入张量。"""
        return self.seq(x)

class TinyViT(nn.Module):
    """TinyViT架构,用于视觉任务。"""

    def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_sizes=[7, 7, 14, 7], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, use_checkpoint=False):
        """初始化TinyViT模型。"""
        super().__init__()
        self.img_size = img_size  # 输入图像大小
        self.num_classes = num_classes  # 分类数量
        self.depths = depths  # 每层的深度
        self.num_layers = len(depths)  # 层数
        self.mlp_ratio = mlp_ratio  # MLP隐藏层与嵌入层的比例

        activation = nn.GELU  # 激活函数

        # 初始化补丁嵌入层
        self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation)

        # 构建层
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            # 每层的参数
            layer = BasicLayer(dim=embed_dims[i_layer], input_resolution=(self.patch_embed.patches_resolution[0] // (2 ** i_layer), self.patch_embed.patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_sizes[i_layer], mlp_ratio=self.mlp_ratio, drop=drop_rate)
            self.layers.append(layer)

        # 分类头
        self.norm_head = nn.LayerNorm(embed_dims[-1])  # 归一化层
        self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()  # 分类层

    def forward(self, x):
        """执行输入张量的前向传播。"""
        x = self.patch_embed(x)  # 通过补丁嵌入层
        for layer in self.layers:
            x = layer(x)  # 通过每一层
        return self.head(self.norm_head(x))  # 通过分类头

代码说明:

  1. Conv2d_BN:定义了一个包含卷积和批量归一化的层。卷积层用于提取特征,批量归一化有助于加速训练和提高稳定性。

  2. PatchEmbed:将输入图像分割成补丁,并将这些补丁投影到一个更高的维度,以便后续处理。通过两个卷积层来实现这一点。

  3. TinyViT:这是模型的主要类,负责构建整个TinyViT架构。它包含补丁嵌入层和多个基本层(BasicLayer),每个基本层包含多个TinyViT块。最后通过一个分类头输出分类结果。

总结:

这段代码展示了TinyViT模型的基本结构,主要包括图像补丁嵌入、多个层的堆叠以及最终的分类过程。

这个程序文件实现了一个名为TinyViT的视觉模型架构,主要用于图像处理任务。TinyViT结合了卷积神经网络(CNN)和自注意力机制,借鉴了LeViT和Swin Transformer的设计思想。文件中定义了多个类,每个类实现了模型的不同组成部分。

首先,文件导入了必要的库,包括PyTorch的核心模块和一些实用工具。接着,定义了一个Conv2d_BN类,它是一个顺序容器,执行二维卷积操作并随后进行批量归一化。这一类在模型的多个地方被用作基础构建块。

接下来是PatchEmbed类,它将输入图像分割成多个小块(patches),并将这些小块投影到指定的嵌入维度。这个过程使得模型能够处理图像的局部特征。

MBConv类实现了移动反向瓶颈卷积层,这是EfficientNet架构的一部分。它通过多个卷积层和激活函数来处理输入数据,并在训练时应用DropPath策略以提高模型的泛化能力。

PatchMerging类负责合并特征图中的相邻小块,并将其投影到新的维度。这一过程有助于在特征图的不同层次之间传递信息。

ConvLayer类是一个卷积层,包含多个MBConv层,并可选择性地对输出进行下采样。它支持梯度检查点,以节省内存。

Mlp类实现了多层感知机(MLP),用于处理特征并应用层归一化和全连接层。

Attention类实现了多头自注意力机制,能够根据空间分辨率应用注意力偏置。它通过对输入进行归一化、查询、键和值的计算来实现注意力机制。

TinyViTBlock类结合了自注意力和局部卷积操作,形成TinyViT的基本构建块。它通过窗口分区和反向操作来处理输入特征。

BasicLayer类则是TinyViT架构中的一个基本层,包含多个TinyViT块,并可选择性地进行下采样。

LayerNorm2d类实现了二维层归一化,确保在处理特征时能够保持稳定性。

最后,TinyViT类是整个模型的核心,负责初始化模型的各个部分,包括图像大小、输入通道数、类别数、嵌入维度、深度、注意力头数等。它构建了多个层并实现了前向传播的逻辑。

总体而言,这个文件实现了一个高效的视觉模型TinyViT,结合了卷积和自注意力机制,适用于各种视觉任务。模型的设计灵活,允许用户根据需求调整各个参数,以实现最佳性能。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\instance.py

以下是经过简化和注释的核心代码部分,主要保留了 BboxesInstances 类的实现,以及它们的主要方法。

import numpy as np

class Bboxes:
    """
    处理边界框的类,支持多种格式('xyxy', 'xywh', 'ltwh')。
    属性:
        bboxes (numpy.ndarray): 存储边界框的二维数组。
        format (str): 边界框的格式('xyxy', 'xywh', 或 'ltwh')。
    """

    def __init__(self, bboxes, format='xyxy') -> None:
        """初始化 Bboxes 类,设置边界框数据和格式。"""
        assert format in ['xyxy', 'xywh', 'ltwh'], f'无效的边界框格式: {format}'
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes  # 如果是一维数组,转为二维
        assert bboxes.ndim == 2 and bboxes.shape[1] == 4, '边界框数据必须是二维数组,且每个框有4个坐标'
        self.bboxes = bboxes
        self.format = format

    def convert(self, format):
        """将边界框格式转换为指定格式。"""
        assert format in ['xyxy', 'xywh', 'ltwh'], f'无效的边界框格式: {format}'
        if self.format == format:
            return
        # 根据当前格式和目标格式选择转换函数
        func = {
            'xyxy': {'xywh': xyxy2xywh, 'ltwh': xyxy2ltwh},
            'xywh': {'xyxy': xywh2xyxy, 'ltwh': xywh2ltwh},
            'ltwh': {'xyxy': ltwh2xyxy, 'xywh': ltwh2xywh}
        }[self.format][format]
        self.bboxes = func(self.bboxes)  # 执行转换
        self.format = format

    def areas(self):
        """计算每个边界框的面积。"""
        self.convert('xyxy')  # 确保转换为 'xyxy' 格式
        return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # 宽 * 高

    def __len__(self):
        """返回边界框的数量。"""
        return len(self.bboxes)

class Instances:
    """
    存储图像中检测到的对象的边界框、分段和关键点的容器。
    属性:
        _bboxes (Bboxes): 内部对象,用于处理边界框操作。
        keypoints (ndarray): 关键点数据,形状为 [N, 17, 3]。
        segments (ndarray): 分段数组,形状为 [N, 1000, 2]。
    """

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None:
        """初始化 Instances 类,设置边界框、分段和关键点数据。"""
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)  # 创建 Bboxes 对象
        self.keypoints = keypoints
        self.normalized = normalized
        # 处理分段数据
        if segments is None:
            segments = []
        if len(segments) > 0:
            segments = resample_segments(segments)  # 重采样分段
            segments = np.stack(segments, axis=0)  # 转为数组
        else:
            segments = np.zeros((0, 1000, 2), dtype=np.float32)  # 默认空分段
        self.segments = segments

    def convert_bbox(self, format):
        """转换边界框格式。"""
        self._bboxes.convert(format=format)

    @property
    def bbox_areas(self):
        """计算边界框的面积。"""
        return self._bboxes.areas()

    def __getitem__(self, index) -> 'Instances':
        """
        使用索引获取特定实例或实例集。
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    def __len__(self):
        """返回实例的数量。"""
        return len(self.bboxes)

    @property
    def bboxes(self):
        """返回边界框。"""
        return self._bboxes.bboxes

代码注释说明

  1. Bboxes 类:

    • 用于处理边界框的各种操作,包括初始化、格式转换和面积计算。
    • 在初始化时,检查输入的格式和形状,确保数据有效。
    • 提供了 convert 方法用于格式转换,areas 方法用于计算每个边界框的面积。
  2. Instances 类:

    • 用于存储和管理检测到的对象的边界框、分段和关键点。
    • 初始化时,创建一个 Bboxes 对象并处理分段数据。
    • 提供了方法来转换边界框格式、获取边界框面积以及通过索引获取特定实例。

通过这些注释,代码的结构和功能变得更加清晰,便于理解和维护。

这个程序文件是一个处理边界框(bounding boxes)和实例(instances)的工具类,主要用于计算机视觉任务,特别是在YOLO(You Only Look Once)算法中。文件中定义了两个主要的类:BboxesInstances,它们分别用于处理边界框和图像中检测到的对象的实例。

首先,Bboxes类用于管理边界框。它支持多种边界框格式,包括xyxy(左上角和右下角坐标)、xywh(中心坐标和宽高)以及ltwh(左上角坐标和宽高)。在初始化时,Bboxes类会检查输入的格式是否有效,并确保边界框数据是一个二维的NumPy数组。类中提供了多种方法,例如convert用于转换边界框格式,areas用于计算边界框的面积,muladd用于缩放和偏移边界框的坐标。此外,Bboxes类还实现了索引功能,可以通过索引获取特定的边界框。

接下来,Instances类是一个更复杂的容器,除了包含边界框外,还可以存储对象的分段(segments)和关键点(keypoints)。在初始化时,Instances类会创建一个Bboxes对象来处理边界框,并根据输入的分段和关键点进行相应的处理。该类提供了方法来转换边界框格式、计算边界框面积、缩放、归一化和去归一化边界框、分段和关键点的坐标。此外,Instances类还支持通过索引获取特定的实例,并实现了翻转和裁剪操作,以确保边界框和其他数据在图像边界内。

总的来说,这个文件为YOLOv8算法提供了一个强大的工具,能够方便地处理和操作边界框、分段和关键点数据,支持多种格式的转换和坐标的归一化/去归一化,适用于各种计算机视觉任务。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8架构的计算机视觉框架,主要用于目标检测和分类任务。它提供了一系列工具和模块,涵盖数据处理、模型训练、推理、以及模型架构的实现。项目的设计旨在提高用户的灵活性和可扩展性,允许用户根据需求进行自定义和优化。

主要功能模块包括:

  1. 数据处理:负责加载和预处理数据集,支持多种数据增强和格式转换。
  2. 模型架构:实现了YOLOv8及其变种的模型结构,包括卷积层、注意力机制等。
  3. 训练与评估:提供训练模型的功能,支持损失计算、指标评估和可视化。
  4. 推理与预测:实现了模型的推理功能,支持目标检测和分类的实时预测。
  5. 工具与实用函数:提供了一些实用的工具类,用于处理边界框、实例数据等。

文件功能整理表

文件路径功能描述
code\ultralytics\data\base.py定义了基础数据集类,负责加载和处理图像数据,支持数据增强和标签更新。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\ops_dcnv3\functions\dcnv3_func.py实现了DCNv3(可变形卷积)功能,包含前向和反向传播的自定义操作。
ui.py提供了一个简单的界面,用于运行Streamlit应用程序。
train.py定义了训练目标检测模型的框架,包含数据集构建、数据加载、模型训练和结果可视化等功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\tiny_encoder.py实现了TinyViT模型架构,结合卷积和自注意力机制,适用于图像处理任务。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\instance.py提供了处理边界框和实例数据的工具类,支持多种格式转换和坐标操作。
code\ultralytics\solutions\distance_calculation.py实现了距离计算的功能,可能用于目标检测中的后处理或评估。
code\ultralytics\models\yolo\classify\predict.py实现了YOLO模型的分类推理功能,支持对输入图像进行分类预测。
code\ultralytics\models\yolo\detect\__init__.py初始化YOLO检测模块,可能包含模型加载和推理的相关功能。
code\ultralytics\engine\trainer.py定义了训练引擎,负责模型的训练过程,包括优化器、损失计算和训练循环等。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\__init__.py初始化模型模块,可能包含对各个模型的引用和管理。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\__init__.py初始化工具模块,提供各种实用工具的引用和管理。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\VanillaNet.py实现了VanillaNet骨干网络,可能用于特征提取或作为YOLO模型的一部分。

这个表格总结了项目中各个文件的主要功能,帮助用户快速了解项目的结构和各个模块的作用。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/buds418

参考原始博客2: https://github.com/VisionMillionDataStudio/buds418

  • 22
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值