管道检测与识别系统源码分享

管道检测与识别检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着城市化进程的加快,地下管道的建设与维护日益成为城市管理的重要组成部分。管道作为城市基础设施的重要环节,其安全性和可靠性直接影响到城市的正常运行和居民的生活质量。然而,传统的管道检测方法往往依赖人工巡检,不仅效率低下,而且容易受到人为因素的影响,导致漏检或误检的情况发生。因此,开发一种高效、准确的管道检测与识别系统显得尤为重要。

近年来,深度学习技术的迅猛发展为目标检测领域带来了新的机遇。YOLO(You Only Look Once)系列模型因其实时性和高精度的特点,逐渐成为目标检测的主流方法。YOLOv8作为该系列的最新版本,在模型结构和算法优化上进行了多项改进,具备了更强的特征提取能力和更快的推理速度。这使得YOLOv8在复杂环境下的目标检测任务中表现出色,尤其适用于需要实时反馈的应用场景,如管道检测。

本研究旨在基于改进的YOLOv8模型,构建一个高效的管道检测与识别系统。该系统将针对特定的管道类别进行训练与优化,数据集包含2910张图像,涵盖了四种管道类别:管道前视、管道左侧、管道右侧和管道顶部。这些数据不仅为模型的训练提供了丰富的样本,也为后续的性能评估和模型优化奠定了基础。通过对这些图像的深入分析,模型能够学习到不同管道在不同视角下的特征,从而提高识别的准确性和鲁棒性。

此外,管道检测与识别系统的研究不仅具有理论意义,还具有重要的实际应用价值。通过自动化的管道检测,能够显著提高管道维护的效率,降低人工成本,减少因管道故障导致的经济损失和安全隐患。同时,该系统的推广应用将为城市基础设施的智能化管理提供有力支持,推动智慧城市的建设进程。

在研究过程中,我们还将探索改进YOLOv8模型的多种策略,如数据增强、模型剪枝和迁移学习等,以进一步提升模型的性能和适应性。这些技术的应用不仅能够提升管道检测的准确性,还能为其他领域的目标检测任务提供借鉴,推动计算机视觉技术的进一步发展。

综上所述,基于改进YOLOv8的管道检测与识别系统的研究,不仅填补了现有技术在管道检测领域的空白,也为城市基础设施的智能化管理提供了新的解决方案。通过这一研究,我们期望能够为管道检测技术的发展贡献一份力量,同时为相关领域的研究者提供参考与启示。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 4
names: [‘pipe_front’, ‘pipe_left’, ‘pipe_right’, ‘pipe_top’]

4.2 本项目数据集信息介绍

数据集信息展示

在现代计算机视觉领域,尤其是在管道检测与识别的应用中,数据集的质量和多样性直接影响到模型的性能和泛化能力。本研究所采用的数据集名为“Pipes”,该数据集专门设计用于训练和改进YOLOv8的管道检测与识别系统。通过对该数据集的深入分析,我们可以更好地理解其在模型训练中的重要性及其潜在应用。

“Pipes”数据集包含四个主要类别,分别是“pipe_front”、“pipe_left”、“pipe_right”和“pipe_top”。这些类别的设计考虑到了管道在实际应用中的不同视角和方位,确保模型能够在多种场景下有效识别和定位管道。具体而言,“pipe_front”类别主要关注管道的正面视图,适用于需要从正面进行检测的场景;“pipe_left”和“pipe_right”则分别对应管道的左侧和右侧视图,能够帮助模型在不同角度下识别管道的存在;而“pipe_top”则代表从上方俯视管道的情况,适合于那些需要从高处进行监测的应用场景。

数据集的构建过程中,考虑到了多样性和代表性。每个类别的样本均经过精心挑选,确保涵盖了各种管道的形状、尺寸、材质和环境背景。这种多样性不仅增强了数据集的丰富性,也为模型提供了更广泛的学习基础,使其能够在面对不同条件时保持较高的识别准确率。此外,数据集中的图像经过标注,包含了每个管道实例的边界框信息,便于模型进行目标检测任务的训练。

在数据集的规模方面,“Pipes”数据集的样本数量经过精心设计,以确保模型能够在训练过程中获得足够的样本信息,从而有效学习到管道的特征。这种平衡的样本分布,有助于避免模型在某一类别上过拟合,同时提升其在其他类别上的识别能力。数据集的构建者还考虑到了数据增强技术的应用,通过旋转、缩放、翻转等方式,进一步丰富了数据集的样本,使得模型在训练时能够接触到更多的变异情况。

在实际应用中,经过“Pipes”数据集训练的YOLOv8模型,能够在复杂的环境中实现高效的管道检测与识别。这一能力对于工业监测、城市基础设施管理以及环境保护等领域具有重要意义。通过实时监测管道的状态,能够及时发现潜在的泄漏或损坏,从而降低维护成本,提升安全性。

综上所述,“Pipes”数据集不仅为YOLOv8的管道检测与识别系统提供了坚实的基础,也为相关领域的研究与应用开辟了新的可能性。通过不断优化和扩展数据集,我们期望能够进一步提升模型的性能,使其在更广泛的应用场景中发挥作用。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法作为目标检测领域的一项重要创新,代表了YOLO系列算法的又一次重大进步。它不仅在速度和精度上取得了显著提升,还在网络结构和损失函数设计上进行了深刻的优化,旨在满足现代计算机视觉任务日益增长的需求。YOLOv8的设计理念是快速、准确且易于使用,使其成为广泛应用于目标检测、图像分割和图像分类等任务的理想选择。

首先,YOLOv8在输入图像的处理上引入了自适应缩放机制,默认的输入尺寸为640x640像素。然而,在实际应用中,图像的长宽比往往各不相同。为了提高目标检测的效率,YOLOv8采用了一种创新的缩放策略:将图像的长边按比例缩小至指定尺寸,然后对短边进行填充。这种方法有效减少了信息冗余,确保了模型在处理不同尺寸图像时的灵活性。此外,在训练阶段,YOLOv8还引入了Mosaic图像增强技术,通过将四张不同的训练图像随机缩放并拼接成一张新图像,迫使模型学习到不同位置和周围像素的特征,从而提高了模型的泛化能力和预测精度。

在网络结构方面,YOLOv8的主干网络(Backbone)采用了C2F模块,这一模块是对YOLOv5中C3模块的优化。C2F模块通过并行化更多的梯度流分支,既保持了网络的轻量化,又提升了特征提取的丰富性和精度。与C3模块相比,C2F模块在保证性能的同时,降低了计算复杂度,使得YOLOv8在处理大规模数据时依然能够保持高效。

YOLOv8的Neck部分同样经历了重要的变革。该部分去除了YOLOv5中两次上采样之前的1x1卷积连接层,直接对主干网络不同阶段输出的特征进行上采样。这一改进不仅简化了网络结构,还加快了特征融合的速度,使得模型在特征传递过程中更为高效。

在头部结构(Head)方面,YOLOv8的变化尤为显著。它从耦合头(Coupled-Head)转变为解耦头(Decoupled-Head),将检测和分类的卷积过程分开。通过先对输入特征图进行降维处理,YOLOv8分别为类别预测和边界框回归设计了独立的卷积路径。这种解耦设计不仅提高了模型的可解释性,还增强了目标检测的精度。此外,YOLOv8在损失函数的设计上也进行了创新,采用了分布焦点损失(DFL)和CIoU损失,以便更好地聚焦于标签附近的数值,从而提升边界框的回归精度。

值得注意的是,YOLOv8摒弃了传统的基于锚框(Anchor-Based)的方法,转而采用无锚框(Anchor-Free)策略。这一策略将目标检测转化为关键点检测,避免了在训练前对锚框进行预设的复杂过程,显著提升了模型的灵活性和泛化能力。无锚框方法使得YOLOv8能够更好地适应不同的数据集和目标物体,简化了网络框架。

YOLOv8在性能上也取得了显著的提升。与之前的YOLO版本相比,它在COCOval2017数据集上的表现更加出色,精度和帧率均有显著提高。这使得YOLOv8在智能监控、自动驾驶、人脸识别等多种应用场景中都能展现出优异的性能。

综上所述,YOLOv8算法通过对网络结构的优化、损失函数的创新以及输入处理的灵活性,成功地提升了目标检测的精度和速度。其在特征提取、特征融合和目标定位等方面的改进,使得YOLOv8不仅在理论上具有重要意义,也在实际应用中展现出广泛的适用性和高效性。随着YOLOv8的不断发展和应用,目标检测技术将迎来更加广阔的前景,为各类智能应用提供更为强大的支持。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是经过简化和注释的核心代码部分:

import sys
import subprocess
from QtFusion.path import abs_path

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令,并捕获结果
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 获取脚本的绝对路径
    script_path = abs_path("web.py")

    # 运行指定的脚本
    run_script(script_path)

代码分析与注释:

  1. 导入模块

    • sys:用于访问与 Python 解释器相关的变量和函数。
    • subprocess:用于执行外部命令。
    • abs_path:从 QtFusion.path 模块导入的函数,用于获取文件的绝对路径。
  2. run_script 函数

    • 该函数接受一个脚本路径作为参数,并使用当前 Python 环境来运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保使用正确的 Python 版本。
    • 构建命令字符串,使用 streamlit 运行指定的脚本。
    • 使用 subprocess.run 执行命令,并通过 shell=True 允许在 shell 中执行。
    • 检查命令的返回码,如果不为0,表示脚本运行失败,打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 调用 abs_path 函数获取 web.py 的绝对路径。
    • 调用 run_script 函数来运行该脚本。

通过这些注释,代码的核心功能和逻辑变得更加清晰。

这个程序文件 ui.py 的主要功能是运行一个指定的 Python 脚本,具体来说是使用 Streamlit 框架来启动一个 Web 应用。程序首先导入了必要的模块,包括 sysossubprocess,以及一个自定义的路径处理函数 abs_path

run_script 函数中,程序接收一个参数 script_path,这个参数是要运行的脚本的路径。函数内部首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来执行脚本。接着,程序构建了一个命令字符串,这个命令将调用 Streamlit 运行指定的脚本。命令的格式是 python -m streamlit run "script_path",其中 script_path 是传入的脚本路径。

随后,程序使用 subprocess.run 方法来执行这个命令。shell=True 参数表示命令将在一个新的 shell 中执行。执行完命令后,程序检查返回的状态码,如果返回码不为 0,说明脚本运行出错,程序会打印出错误信息。

在文件的最后部分,程序通过 if __name__ == "__main__": 判断是否是直接运行该脚本。如果是,它会调用 abs_path 函数来获取 web.py 脚本的绝对路径,并将其传递给 run_script 函数以启动 Web 应用。

总的来说,这个文件的作用是为一个 Streamlit 应用提供一个启动入口,通过命令行调用指定的 Python 脚本来运行 Web 应用。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\tensorboard.py

以下是经过简化和注释的核心代码部分:

# 导入必要的库
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr

try:
    # 尝试导入TensorBoard的SummaryWriter
    from torch.utils.tensorboard import SummaryWriter

    # 确保当前不是在测试运行中
    assert not TESTS_RUNNING  
    # 确保TensorBoard集成已启用
    assert SETTINGS['tensorboard'] is True  
    WRITER = None  # 初始化TensorBoard的SummaryWriter实例

except (ImportError, AssertionError, TypeError):
    # 处理导入错误或断言错误
    SummaryWriter = None  # 如果导入失败,则将SummaryWriter设置为None


def _log_scalars(scalars, step=0):
    """将标量值记录到TensorBoard中。"""
    if WRITER:  # 如果WRITER存在
        for k, v in scalars.items():  # 遍历标量字典
            WRITER.add_scalar(k, v, step)  # 记录每个标量


def _log_tensorboard_graph(trainer):
    """将模型图记录到TensorBoard中。"""
    try:
        import warnings
        from ultralytics.utils.torch_utils import de_parallel, torch

        imgsz = trainer.args.imgsz  # 获取输入图像大小
        imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz  # 确保图像大小为元组
        p = next(trainer.model.parameters())  # 获取模型参数以确定设备和类型
        im = torch.zeros((1, 3, *imgsz), device=p.device, dtype=p.dtype)  # 创建输入图像(必须为零)

        with warnings.catch_warnings():
            warnings.simplefilter('ignore', category=UserWarning)  # 忽略JIT跟踪警告
            WRITER.add_graph(torch.jit.trace(de_parallel(trainer.model), im, strict=False), [])  # 记录模型图
    except Exception as e:
        LOGGER.warning(f'WARNING ⚠️ TensorBoard图形可视化失败 {e}')  # 记录警告


def on_pretrain_routine_start(trainer):
    """初始化TensorBoard记录。"""
    if SummaryWriter:  # 如果SummaryWriter存在
        try:
            global WRITER
            WRITER = SummaryWriter(str(trainer.save_dir))  # 创建SummaryWriter实例
            prefix = colorstr('TensorBoard: ')
            LOGGER.info(f"{prefix}开始使用 'tensorboard --logdir {trainer.save_dir}',在 http://localhost:6006/ 查看。")
        except Exception as e:
            LOGGER.warning(f'WARNING ⚠️ TensorBoard未正确初始化,未记录此次运行。 {e}')  # 记录警告


def on_train_start(trainer):
    """在训练开始时记录TensorBoard图形。"""
    if WRITER:  # 如果WRITER存在
        _log_tensorboard_graph(trainer)  # 记录模型图


def on_batch_end(trainer):
    """在训练批次结束时记录标量统计信息。"""
    _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)  # 记录训练损失


def on_fit_epoch_end(trainer):
    """在训练周期结束时记录周期指标。"""
    _log_scalars(trainer.metrics, trainer.epoch + 1)  # 记录训练指标


# 定义回调函数字典,如果SummaryWriter存在则添加回调
callbacks = {
    'on_pretrain_routine_start': on_pretrain_routine_start,
    'on_train_start': on_train_start,
    'on_fit_epoch_end': on_fit_epoch_end,
    'on_batch_end': on_batch_end
} if SummaryWriter else {}

代码说明:

  1. 导入部分:导入必要的库和模块,特别是TensorBoard的SummaryWriter,用于记录训练过程中的标量和图形信息。
  2. 异常处理:在导入SummaryWriter时进行异常处理,以确保在不支持的环境中不会导致程序崩溃。
  3. 记录标量_log_scalars函数用于将标量值(如损失、准确率等)记录到TensorBoard中。
  4. 记录模型图_log_tensorboard_graph函数用于记录模型的计算图,以便在TensorBoard中可视化。
  5. 回调函数:定义了一系列回调函数,在训练的不同阶段(如开始训练、结束批次、结束周期等)执行相应的记录操作。
  6. 回调字典:根据SummaryWriter的存在与否,动态构建回调函数字典,以便在训练过程中调用。

这个程序文件是用于在Ultralytics YOLO框架中集成TensorBoard的功能,主要负责记录训练过程中的各种指标和模型图形,以便于后续的可视化和分析。

文件开头引入了一些必要的模块和库,包括日志记录器、设置参数和颜色字符串等。接着,尝试导入torch.utils.tensorboard中的SummaryWriter,这是TensorBoard的核心组件,用于记录和保存训练过程中的数据。如果导入失败,或者在测试运行时,或者设置中未启用TensorBoard,则会捕获异常并将SummaryWriter设置为None

在文件中定义了几个函数。_log_scalars函数用于将标量值记录到TensorBoard中,接受一个字典类型的参数scalars和一个步数参数step。如果WRITER实例存在,就会遍历字典中的每一项并将其添加到TensorBoard中。

_log_tensorboard_graph函数用于将模型的计算图记录到TensorBoard。它首先获取输入图像的尺寸,然后创建一个全零的张量作为输入。接着,使用torch.jit.trace对模型进行跟踪,并将生成的图形添加到TensorBoard中。如果过程中出现任何异常,则会记录警告信息。

on_pretrain_routine_start函数在训练前初始化TensorBoard的记录功能,创建SummaryWriter实例并输出相关信息,提示用户如何启动TensorBoard并查看日志。

on_train_start函数在训练开始时调用,用于记录模型的计算图。

on_batch_end函数在每个训练批次结束时调用,记录当前批次的损失值。

on_fit_epoch_end函数在每个训练周期结束时调用,记录该周期的指标。

最后,文件定义了一个回调字典callbacks,将上述函数与相应的事件关联起来,只有在SummaryWriter存在的情况下才会创建这个字典。这样,在训练过程中可以根据不同的事件触发相应的记录操作,以便于在TensorBoard中查看训练进度和效果。

11.3 code\ultralytics\utils\errors.py
# 导入Ultralytics库中的emojis工具
from ultralytics.utils import emojis

class HUBModelError(Exception):
    """
    自定义异常类,用于处理与Ultralytics YOLO模型获取相关的错误。

    当请求的模型未找到或无法检索时,将引发此异常。
    消息经过处理,以包含表情符号,以改善用户体验。

    属性:
        message (str): 当异常被引发时显示的错误消息。

    注意:
        消息会通过'ultralytics.utils'包中的'emojis'函数自动处理。
    """

    def __init__(self, message="Model not found. Please check model URL and try again."):
        """当模型未找到时创建异常。"""
        # 调用父类的构造函数,并将处理过的消息传递给它
        super().__init__(emojis(message))

代码核心部分及注释说明:

  1. 导入emojis工具:用于将文本消息转换为包含表情符号的格式,增强用户体验。
  2. HUBModelError类:自定义异常类,继承自Python内置的Exception类,用于处理模型获取错误。
  3. 构造函数__init__
    • 接受一个可选的消息参数,默认值为“Model not found. Please check model URL and try again.”。
    • 调用父类的构造函数,使用emojis函数处理消息,使其包含表情符号。

这个程序文件定义了一个自定义异常类 HUBModelError,用于处理与 Ultralytics YOLO 模型获取相关的错误。该异常类主要用于在请求的模型未找到或无法检索时抛出异常,提供了更友好的用户体验。

在文件的开头,首先引入了 emojis 函数,这个函数来自 ultralytics.utils 包,主要用于处理消息中的表情符号。接着,定义了 HUBModelError 类,该类继承自 Python 的内置 Exception 类。

类的文档字符串详细说明了该异常的用途和属性。它指出,当请求的模型无法找到时,将会抛出这个异常,并且异常消息会经过 emojis 函数处理,以便在显示时包含表情符号,从而提升用户体验。

__init__ 方法中,定义了一个默认的错误消息:“Model not found. Please check model URL and try again.”,表示模型未找到,建议用户检查模型的 URL 并重试。调用 super().__init__(emojis(message)) 将处理后的消息传递给父类的构造函数,以确保异常能够正确地被抛出并显示。

总的来说,这个文件的主要功能是提供一个清晰、友好的方式来处理与模型获取相关的错误,帮助开发者更好地调试和用户更好地理解问题。

11.4 train.py

以下是经过简化和注释的核心代码部分:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    基于检测模型的训练类,继承自BaseTrainer类。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 图像文件夹的路径。
            mode (str): 模式,可以是'train'或'val',用于不同的数据增强。
            batch (int, optional): 批次大小,仅用于'rect'模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在DDP中初始化数据集
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. 导入模块:导入必要的库和模块,包括数据处理、模型构建和工具函数。
  2. DetectionTrainer类:定义一个继承自BaseTrainer的类,用于训练YOLO检测模型。
  3. build_dataset方法:构建YOLO数据集,支持训练和验证模式,允许不同的数据增强。
  4. get_dataloader方法:构建数据加载器,支持分布式训练。
  5. preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和可选的多尺度调整。
  6. get_model方法:创建并返回YOLO检测模型,支持加载预训练权重。
  7. plot_training_samples方法:绘制训练样本及其对应的注释,便于可视化训练过程。
  8. plot_metrics方法:从CSV文件中绘制训练指标,便于监控训练效果。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,基于 Ultralytics 的实现。程序主要包含一个名为 DetectionTrainer 的类,该类继承自 BaseTrainer,专门用于处理目标检测任务。

在这个类中,首先定义了 build_dataset 方法,用于构建 YOLO 数据集。该方法接收图像路径、模式(训练或验证)和批次大小作为参数,使用 build_yolo_dataset 函数来生成数据集,并根据模型的步幅设置进行调整。

接着,get_dataloader 方法用于构建数据加载器。它会根据传入的模式(训练或验证)初始化数据集,并设置是否打乱数据的顺序。该方法还会根据训练模式的不同,调整工作线程的数量。

preprocess_batch 方法用于对每个批次的图像进行预处理,包括缩放和转换为浮点数格式。它还支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称。这些信息是从数据集中提取的,并被附加到模型中,以便于后续的训练和验证。

get_model 方法用于返回一个 YOLO 检测模型的实例。它可以根据配置文件和权重文件来加载模型。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,负责计算和记录模型在验证集上的表现。

label_loss_items 方法用于返回一个包含训练损失项的字典,这在目标检测中是必要的,因为它需要跟踪多个损失项。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,生成的图像会保存到指定的目录中。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和生成带有标注的训练图像。这些方法利用 plot_resultsplot_labels 函数来实现可视化。

整体来看,这个程序文件实现了 YOLO 模型的训练流程,包括数据集构建、数据加载、图像预处理、模型设置、训练过程监控和结果可视化等功能。

11.5 code\train.py

以下是经过简化和注释的核心代码部分:

import os
import torch
import yaml
from ultralytics import YOLO  # 导入YOLO模型库
from QtFusion.path import abs_path  # 导入路径处理函数

# 设置设备为GPU(如果可用),否则使用CPU
device = "0" if torch.cuda.is_available() else "cpu"

if __name__ == '__main__':  # 确保该模块被直接运行时才执行以下代码
    # 定义工作进程数量和批次大小
    workers = 1
    batch = 2

    # 定义数据集名称
    data_name = "data"
    # 获取数据集配置文件的绝对路径
    data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')
    
    # 获取数据集目录路径
    directory_path = os.path.dirname(data_path)
    
    # 读取YAML配置文件
    with open(data_path, 'r') as file:
        data = yaml.load(file, Loader=yaml.FullLoader)
    
    # 如果YAML文件中包含'path'项,则修改为当前目录路径
    if 'path' in data:
        data['path'] = directory_path
        # 将修改后的数据写回YAML文件
        with open(data_path, 'w') as file:
            yaml.safe_dump(data, file, sort_keys=False)

    # 加载YOLOv8模型
    model = YOLO(model='./ultralytics/cfg/models/v8/yolov8s.yaml', task='detect')
    
    # 开始训练模型
    results2 = model.train(
        data=data_path,  # 指定训练数据的配置文件路径
        device=device,  # 指定训练设备
        workers=workers,  # 指定工作进程数量
        imgsz=640,  # 输入图像大小
        epochs=100,  # 训练的轮数
        batch=batch,  # 每个批次的大小
        name='train_v8_' + data_name  # 训练任务名称
    )

代码注释说明:

  1. 导入库:导入必要的库,包括操作系统相关的os、深度学习框架torch、YAML文件处理库yaml和YOLO模型库。
  2. 设备选择:根据是否有可用的GPU,选择训练设备为GPU或CPU。
  3. 主程序入口:使用if __name__ == '__main__':确保只有在直接运行该脚本时才执行后续代码。
  4. 参数设置:定义工作进程数量和批次大小,便于后续训练配置。
  5. 数据集路径处理:根据数据集名称构建数据集配置文件的绝对路径,并提取其目录路径。
  6. 读取和修改YAML文件:读取YAML配置文件,检查并更新其中的path项为当前目录路径,然后将修改后的内容写回文件。
  7. 模型加载:加载YOLOv8模型,准备进行目标检测任务。
  8. 模型训练:调用train方法开始训练,传入数据路径、设备、工作进程数量、图像大小、训练轮数、批次大小和任务名称等参数。

这个程序文件 train.py 主要用于训练一个YOLOv8目标检测模型。首先,它导入了必要的库,包括 ostorchyamlultralytics 中的 YOLO 模型。程序会检查当前是否有可用的GPU,如果有,则使用GPU进行训练,否则使用CPU。

__main__ 代码块中,程序设置了一些训练参数,包括工作进程数和批次大小。接着,程序定义了数据集的名称,并构建了数据集配置文件的绝对路径。这个路径是通过调用 abs_path 函数获取的,确保路径格式统一为Unix风格。

程序读取指定的YAML文件,保持原有的顺序,并检查是否存在 path 项。如果存在,程序会将其更新为数据集目录的路径,并将修改后的内容写回到YAML文件中。这一步是为了确保YOLO模型能够正确找到数据集。

随后,程序加载了预训练的YOLOv8模型,指定了模型的配置文件路径。接下来,程序调用 model.train 方法开始训练模型。在训练过程中,程序会使用之前设置的参数,包括数据配置文件路径、设备类型、工作进程数、输入图像大小、训练的epoch数量和批次大小。同时,训练任务的名称也会根据数据集名称进行命名。

总体来说,这个程序文件实现了YOLOv8模型的训练过程,涵盖了数据集路径的处理、模型的加载以及训练参数的设置。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\sam.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
from torch import nn

class Sam(nn.Module):
    """
    Sam (Segment Anything Model) 是一个用于对象分割任务的模型。它使用图像编码器生成图像嵌入,并使用提示编码器对各种类型的输入提示进行编码。这些嵌入随后被掩码解码器用于预测对象掩码。
    """

    def __init__(
        self,
        image_encoder: ImageEncoderViT,  # 图像编码器,用于将图像编码为嵌入
        prompt_encoder: PromptEncoder,     # 提示编码器,用于编码输入提示
        mask_decoder: MaskDecoder,         # 掩码解码器,用于从图像嵌入和编码的提示中预测掩码
        pixel_mean: List[float] = (123.675, 116.28, 103.53),  # 图像归一化的均值
        pixel_std: List[float] = (58.395, 57.12, 57.375)       # 图像归一化的标准差
    ) -> None:
        """
        初始化 Sam 类,用于从图像和输入提示中预测对象掩码。

        参数:
            image_encoder (ImageEncoderViT): 用于将图像编码为图像嵌入的主干网络。
            prompt_encoder (PromptEncoder): 编码各种类型输入提示的编码器。
            mask_decoder (MaskDecoder): 从图像嵌入和编码的提示中预测掩码的解码器。
            pixel_mean (List[float], optional): 输入图像的像素归一化均值,默认为 (123.675, 116.28, 103.53)。
            pixel_std (List[float], optional): 输入图像的像素归一化标准差,默认为 (58.395, 57.12, 57.375)。
        """
        super().__init__()  # 调用父类 nn.Module 的初始化方法
        self.image_encoder = image_encoder  # 保存图像编码器
        self.prompt_encoder = prompt_encoder  # 保存提示编码器
        self.mask_decoder = mask_decoder  # 保存掩码解码器
        # 注册像素均值和标准差,用于图像归一化
        self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)

代码说明:

  1. 导入必要的库:导入了 torchtorch.nn,用于构建深度学习模型。
  2. Sam 类:继承自 nn.Module,用于实现对象分割模型。
  3. 初始化方法
    • 接收图像编码器、提示编码器和掩码解码器作为参数。
    • pixel_meanpixel_std 用于图像预处理,帮助模型更好地学习。
    • 使用 register_buffer 方法注册均值和标准差,使其成为模型的一部分,但不作为模型的参数进行优化。

这个程序文件是一个名为 sam.py 的 Python 文件,属于 Ultralytics YOLO 项目的一部分,主要用于实现一个名为 Sam(Segment Anything Model)的对象分割模型。该模型的设计目的是处理图像中的对象分割任务。

在文件开头,包含了一些版权和许可证信息,表明该代码遵循 AGPL-3.0 许可证,并且版权归 Meta Platforms, Inc. 及其附属公司所有。

接下来,文件导入了一些必要的库和模块,包括 torchtorch.nn,以及一些自定义的编码器和解码器模块。这些模块分别用于图像编码、提示编码和掩码解码。

Sam 类是该文件的核心部分,继承自 nn.Module,这是 PyTorch 中所有神经网络模块的基类。类的文档字符串详细描述了 Sam 的功能和属性。该模型通过图像编码器生成图像嵌入,并使用提示编码器对输入提示进行编码,最终通过掩码解码器预测对象的掩码。

在类的属性中,mask_threshold 用于设置掩码预测的阈值,image_format 指定输入图像的格式(默认为 RGB)。image_encoderprompt_encodermask_decoder 分别是用于图像嵌入、提示编码和掩码预测的模块。pixel_meanpixel_std 则用于图像归一化处理的均值和标准差。

构造函数 __init__ 初始化了 Sam 类的实例,接受图像编码器、提示编码器和掩码解码器作为参数,并允许用户自定义像素的均值和标准差,默认值已经在文档中给出。构造函数中调用了父类的初始化方法,并将传入的编码器和解码器赋值给相应的属性。此外,使用 register_buffer 方法注册了 pixel_meanpixel_std,这使得它们在模型的状态字典中可用,但不会被视为模型的可训练参数。

总的来说,这个文件实现了一个用于对象分割的模型框架,提供了必要的结构和初始化方法,以便后续进行图像处理和掩码预测。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于 YOLOv8 的目标检测和分割模型的实现,主要用于计算机视觉任务。它包含多个模块和文件,每个文件负责特定的功能,如模型训练、数据处理、错误处理、可视化等。整体架构围绕 YOLOv8 模型的训练和推理过程展开,提供了灵活的接口和工具,以便于用户进行模型的训练、评估和可视化。

文件功能整理表

文件路径功能描述
D:\tools\20240809\code\ui.py提供一个入口来运行 Streamlit Web 应用,用于展示和交互 YOLO 模型的功能。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\tensorboard.py集成 TensorBoard 以记录训练过程中的指标和可视化模型性能。
D:\tools\20240809\code\code\ultralytics\utils\errors.py定义自定义异常类 HUBModelError,用于处理模型获取相关的错误。
D:\tools\20240809\code\train.py负责训练 YOLO 模型,设置训练参数,加载数据集和模型,并启动训练过程。
D:\tools\20240809\code\code\train.py另一个训练脚本,主要用于配置和启动 YOLOv8 模型的训练过程,处理数据集路径和模型加载。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\sam.py实现 Segment Anything Model (SAM),用于图像分割任务,包含模型的结构和初始化。
D:\tools\20240809\code\code\ultralytics\data\explorer\gui\__init__.py初始化数据探索工具的 GUI 模块,提供用户界面以浏览和分析数据集。
D:\tools\20240809\code\code\ultralytics\models\sam\amg.py实现与 SAM 相关的自适应多图像生成 (AMG) 功能,支持图像处理和分割。
D:\tools\20240809\code\code\ultralytics\models\utils\__init__.py初始化模型工具模块,提供与模型相关的辅助功能和工具。
D:\tools\20240809\code\code\ultralytics\engine\trainer.py定义训练引擎,负责模型的训练过程,包括前向传播、反向传播和优化步骤。
D:\tools\20240809\code\code\ultralytics\hub\session.py管理模型的会话,处理模型的加载、保存和推理请求。
D:\tools\20240809\code\code\ultralytics\nn\tasks.py定义与模型任务相关的功能,包括目标检测和分割任务的实现。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\classify\__init__.py初始化 YOLO 分类模型模块,提供分类相关的功能和接口。

这个表格概述了每个文件的主要功能,帮助理解整个项目的结构和各个模块之间的关系。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/Pipes629

参考原始博客2: https://github.com/VisionMillionDataStudio/Pipes629

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值