管道检测与识别检测系统源码分享
[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
项目来源AACV Association for the Advancement of Computer Vision
研究背景与意义
随着城市化进程的加快,地下管道的建设与维护日益成为城市管理的重要组成部分。管道作为城市基础设施的重要环节,其安全性和可靠性直接影响到城市的正常运行和居民的生活质量。然而,传统的管道检测方法往往依赖人工巡检,不仅效率低下,而且容易受到人为因素的影响,导致漏检或误检的情况发生。因此,开发一种高效、准确的管道检测与识别系统显得尤为重要。
近年来,深度学习技术的迅猛发展为目标检测领域带来了新的机遇。YOLO(You Only Look Once)系列模型因其实时性和高精度的特点,逐渐成为目标检测的主流方法。YOLOv8作为该系列的最新版本,在模型结构和算法优化上进行了多项改进,具备了更强的特征提取能力和更快的推理速度。这使得YOLOv8在复杂环境下的目标检测任务中表现出色,尤其适用于需要实时反馈的应用场景,如管道检测。
本研究旨在基于改进的YOLOv8模型,构建一个高效的管道检测与识别系统。该系统将针对特定的管道类别进行训练与优化,数据集包含2910张图像,涵盖了四种管道类别:管道前视、管道左侧、管道右侧和管道顶部。这些数据不仅为模型的训练提供了丰富的样本,也为后续的性能评估和模型优化奠定了基础。通过对这些图像的深入分析,模型能够学习到不同管道在不同视角下的特征,从而提高识别的准确性和鲁棒性。
此外,管道检测与识别系统的研究不仅具有理论意义,还具有重要的实际应用价值。通过自动化的管道检测,能够显著提高管道维护的效率,降低人工成本,减少因管道故障导致的经济损失和安全隐患。同时,该系统的推广应用将为城市基础设施的智能化管理提供有力支持,推动智慧城市的建设进程。
在研究过程中,我们还将探索改进YOLOv8模型的多种策略,如数据增强、模型剪枝和迁移学习等,以进一步提升模型的性能和适应性。这些技术的应用不仅能够提升管道检测的准确性,还能为其他领域的目标检测任务提供借鉴,推动计算机视觉技术的进一步发展。
综上所述,基于改进YOLOv8的管道检测与识别系统的研究,不仅填补了现有技术在管道检测领域的空白,也为城市基础设施的智能化管理提供了新的解决方案。通过这一研究,我们期望能够为管道检测技术的发展贡献一份力量,同时为相关领域的研究者提供参考与启示。
2.图片演示
注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
3.视频演示
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 4
names: [‘pipe_front’, ‘pipe_left’, ‘pipe_right’, ‘pipe_top’]
4.2 本项目数据集信息介绍
数据集信息展示
在现代计算机视觉领域,尤其是在管道检测与识别的应用中,数据集的质量和多样性直接影响到模型的性能和泛化能力。本研究所采用的数据集名为“Pipes”,该数据集专门设计用于训练和改进YOLOv8的管道检测与识别系统。通过对该数据集的深入分析,我们可以更好地理解其在模型训练中的重要性及其潜在应用。
“Pipes”数据集包含四个主要类别,分别是“pipe_front”、“pipe_left”、“pipe_right”和“pipe_top”。这些类别的设计考虑到了管道在实际应用中的不同视角和方位,确保模型能够在多种场景下有效识别和定位管道。具体而言,“pipe_front”类别主要关注管道的正面视图,适用于需要从正面进行检测的场景;“pipe_left”和“pipe_right”则分别对应管道的左侧和右侧视图,能够帮助模型在不同角度下识别管道的存在;而“pipe_top”则代表从上方俯视管道的情况,适合于那些需要从高处进行监测的应用场景。
数据集的构建过程中,考虑到了多样性和代表性。每个类别的样本均经过精心挑选,确保涵盖了各种管道的形状、尺寸、材质和环境背景。这种多样性不仅增强了数据集的丰富性,也为模型提供了更广泛的学习基础,使其能够在面对不同条件时保持较高的识别准确率。此外,数据集中的图像经过标注,包含了每个管道实例的边界框信息,便于模型进行目标检测任务的训练。
在数据集的规模方面,“Pipes”数据集的样本数量经过精心设计,以确保模型能够在训练过程中获得足够的样本信息,从而有效学习到管道的特征。这种平衡的样本分布,有助于避免模型在某一类别上过拟合,同时提升其在其他类别上的识别能力。数据集的构建者还考虑到了数据增强技术的应用,通过旋转、缩放、翻转等方式,进一步丰富了数据集的样本,使得模型在训练时能够接触到更多的变异情况。
在实际应用中,经过“Pipes”数据集训练的YOLOv8模型,能够在复杂的环境中实现高效的管道检测与识别。这一能力对于工业监测、城市基础设施管理以及环境保护等领域具有重要意义。通过实时监测管道的状态,能够及时发现潜在的泄漏或损坏,从而降低维护成本,提升安全性。
综上所述,“Pipes”数据集不仅为YOLOv8的管道检测与识别系统提供了坚实的基础,也为相关领域的研究与应用开辟了新的可能性。通过不断优化和扩展数据集,我们期望能够进一步提升模型的性能,使其在更广泛的应用场景中发挥作用。
5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)
7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)
由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.原始YOLOV8算法原理
原始YOLOv8算法原理
YOLOv8算法作为目标检测领域的一项重要创新,代表了YOLO系列算法的又一次重大进步。它不仅在速度和精度上取得了显著提升,还在网络结构和损失函数设计上进行了深刻的优化,旨在满足现代计算机视觉任务日益增长的需求。YOLOv8的设计理念是快速、准确且易于使用,使其成为广泛应用于目标检测、图像分割和图像分类等任务的理想选择。
首先,YOLOv8在输入图像的处理上引入了自适应缩放机制,默认的输入尺寸为640x640像素。然而,在实际应用中,图像的长宽比往往各不相同。为了提高目标检测的效率,YOLOv8采用了一种创新的缩放策略:将图像的长边按比例缩小至指定尺寸,然后对短边进行填充。这种方法有效减少了信息冗余,确保了模型在处理不同尺寸图像时的灵活性。此外,在训练阶段,YOLOv8还引入了Mosaic图像增强技术,通过将四张不同的训练图像随机缩放并拼接成一张新图像,迫使模型学习到不同位置和周围像素的特征,从而提高了模型的泛化能力和预测精度。
在网络结构方面,YOLOv8的主干网络(Backbone)采用了C2F模块,这一模块是对YOLOv5中C3模块的优化。C2F模块通过并行化更多的梯度流分支,既保持了网络的轻量化,又提升了特征提取的丰富性和精度。与C3模块相比,C2F模块在保证性能的同时,降低了计算复杂度,使得YOLOv8在处理大规模数据时依然能够保持高效。
YOLOv8的Neck部分同样经历了重要的变革。该部分去除了YOLOv5中两次上采样之前的1x1卷积连接层,直接对主干网络不同阶段输出的特征进行上采样。这一改进不仅简化了网络结构,还加快了特征融合的速度,使得模型在特征传递过程中更为高效。
在头部结构(Head)方面,YOLOv8的变化尤为显著。它从耦合头(Coupled-Head)转变为解耦头(Decoupled-Head),将检测和分类的卷积过程分开。通过先对输入特征图进行降维处理,YOLOv8分别为类别预测和边界框回归设计了独立的卷积路径。这种解耦设计不仅提高了模型的可解释性,还增强了目标检测的精度。此外,YOLOv8在损失函数的设计上也进行了创新,采用了分布焦点损失(DFL)和CIoU损失,以便更好地聚焦于标签附近的数值,从而提升边界框的回归精度。
值得注意的是,YOLOv8摒弃了传统的基于锚框(Anchor-Based)的方法,转而采用无锚框(Anchor-Free)策略。这一策略将目标检测转化为关键点检测,避免了在训练前对锚框进行预设的复杂过程,显著提升了模型的灵活性和泛化能力。无锚框方法使得YOLOv8能够更好地适应不同的数据集和目标物体,简化了网络框架。
YOLOv8在性能上也取得了显著的提升。与之前的YOLO版本相比,它在COCOval2017数据集上的表现更加出色,精度和帧率均有显著提高。这使得YOLOv8在智能监控、自动驾驶、人脸识别等多种应用场景中都能展现出优异的性能。
综上所述,YOLOv8算法通过对网络结构的优化、损失函数的创新以及输入处理的灵活性,成功地提升了目标检测的精度和速度。其在特征提取、特征融合和目标定位等方面的改进,使得YOLOv8不仅在理论上具有重要意义,也在实际应用中展现出广泛的适用性和高效性。随着YOLOv8的不断发展和应用,目标检测技术将迎来更加广阔的前景,为各类智能应用提供更为强大的支持。
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 ui.py
以下是经过简化和注释的核心代码部分:
import sys
import subprocess
from QtFusion.path import abs_path
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令,使用 streamlit 运行指定的脚本
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令,并捕获结果
result = subprocess.run(command, shell=True)
# 检查命令执行结果,如果返回码不为0,则表示出错
if result.returncode != 0:
print("脚本运行出错。")
# 主程序入口
if __name__ == "__main__":
# 获取脚本的绝对路径
script_path = abs_path("web.py")
# 运行指定的脚本
run_script(script_path)
代码分析与注释:
-
导入模块:
sys
:用于访问与 Python 解释器相关的变量和函数。subprocess
:用于执行外部命令。abs_path
:从QtFusion.path
模块导入的函数,用于获取文件的绝对路径。
-
run_script
函数:- 该函数接受一个脚本路径作为参数,并使用当前 Python 环境来运行该脚本。
- 使用
sys.executable
获取当前 Python 解释器的路径,以确保使用正确的 Python 版本。 - 构建命令字符串,使用
streamlit
运行指定的脚本。 - 使用
subprocess.run
执行命令,并通过shell=True
允许在 shell 中执行。 - 检查命令的返回码,如果不为0,表示脚本运行失败,打印错误信息。
-
主程序入口:
- 使用
if __name__ == "__main__":
确保只有在直接运行该脚本时才会执行以下代码。 - 调用
abs_path
函数获取web.py
的绝对路径。 - 调用
run_script
函数来运行该脚本。
- 使用
通过这些注释,代码的核心功能和逻辑变得更加清晰。
这个程序文件 ui.py
的主要功能是运行一个指定的 Python 脚本,具体来说是使用 Streamlit 框架来启动一个 Web 应用。程序首先导入了必要的模块,包括 sys
、os
和 subprocess
,以及一个自定义的路径处理函数 abs_path
。
在 run_script
函数中,程序接收一个参数 script_path
,这个参数是要运行的脚本的路径。函数内部首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来执行脚本。接着,程序构建了一个命令字符串,这个命令将调用 Streamlit 运行指定的脚本。命令的格式是 python -m streamlit run "script_path"
,其中 script_path
是传入的脚本路径。
随后,程序使用 subprocess.run
方法来执行这个命令。shell=True
参数表示命令将在一个新的 shell 中执行。执行完命令后,程序检查返回的状态码,如果返回码不为 0,说明脚本运行出错,程序会打印出错误信息。
在文件的最后部分,程序通过 if __name__ == "__main__":
判断是否是直接运行该脚本。如果是,它会调用 abs_path
函数来获取 web.py
脚本的绝对路径,并将其传递给 run_script
函数以启动 Web 应用。
总的来说,这个文件的作用是为一个 Streamlit 应用提供一个启动入口,通过命令行调用指定的 Python 脚本来运行 Web 应用。
11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\tensorboard.py
以下是经过简化和注释的核心代码部分:
# 导入必要的库
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr
try:
# 尝试导入TensorBoard的SummaryWriter
from torch.utils.tensorboard import SummaryWriter
# 确保当前不是在测试运行中
assert not TESTS_RUNNING
# 确保TensorBoard集成已启用
assert SETTINGS['tensorboard'] is True
WRITER = None # 初始化TensorBoard的SummaryWriter实例
except (ImportError, AssertionError, TypeError):
# 处理导入错误或断言错误
SummaryWriter = None # 如果导入失败,则将SummaryWriter设置为None
def _log_scalars(scalars, step=0):
"""将标量值记录到TensorBoard中。"""
if WRITER: # 如果WRITER存在
for k, v in scalars.items(): # 遍历标量字典
WRITER.add_scalar(k, v, step) # 记录每个标量
def _log_tensorboard_graph(trainer):
"""将模型图记录到TensorBoard中。"""
try:
import warnings
from ultralytics.utils.torch_utils import de_parallel, torch
imgsz = trainer.args.imgsz # 获取输入图像大小
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # 确保图像大小为元组
p = next(trainer.model.parameters()) # 获取模型参数以确定设备和类型
im = torch.zeros((1, 3, *imgsz), device=p.device, dtype=p.dtype) # 创建输入图像(必须为零)
with warnings.catch_warnings():
warnings.simplefilter('ignore', category=UserWarning) # 忽略JIT跟踪警告
WRITER.add_graph(torch.jit.trace(de_parallel(trainer.model), im, strict=False), []) # 记录模型图
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ TensorBoard图形可视化失败 {e}') # 记录警告
def on_pretrain_routine_start(trainer):
"""初始化TensorBoard记录。"""
if SummaryWriter: # 如果SummaryWriter存在
try:
global WRITER
WRITER = SummaryWriter(str(trainer.save_dir)) # 创建SummaryWriter实例
prefix = colorstr('TensorBoard: ')
LOGGER.info(f"{prefix}开始使用 'tensorboard --logdir {trainer.save_dir}',在 http://localhost:6006/ 查看。")
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ TensorBoard未正确初始化,未记录此次运行。 {e}') # 记录警告
def on_train_start(trainer):
"""在训练开始时记录TensorBoard图形。"""
if WRITER: # 如果WRITER存在
_log_tensorboard_graph(trainer) # 记录模型图
def on_batch_end(trainer):
"""在训练批次结束时记录标量统计信息。"""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) # 记录训练损失
def on_fit_epoch_end(trainer):
"""在训练周期结束时记录周期指标。"""
_log_scalars(trainer.metrics, trainer.epoch + 1) # 记录训练指标
# 定义回调函数字典,如果SummaryWriter存在则添加回调
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_start': on_train_start,
'on_fit_epoch_end': on_fit_epoch_end,
'on_batch_end': on_batch_end
} if SummaryWriter else {}
代码说明:
- 导入部分:导入必要的库和模块,特别是TensorBoard的
SummaryWriter
,用于记录训练过程中的标量和图形信息。 - 异常处理:在导入
SummaryWriter
时进行异常处理,以确保在不支持的环境中不会导致程序崩溃。 - 记录标量:
_log_scalars
函数用于将标量值(如损失、准确率等)记录到TensorBoard中。 - 记录模型图:
_log_tensorboard_graph
函数用于记录模型的计算图,以便在TensorBoard中可视化。 - 回调函数:定义了一系列回调函数,在训练的不同阶段(如开始训练、结束批次、结束周期等)执行相应的记录操作。
- 回调字典:根据
SummaryWriter
的存在与否,动态构建回调函数字典,以便在训练过程中调用。
这个程序文件是用于在Ultralytics YOLO框架中集成TensorBoard的功能,主要负责记录训练过程中的各种指标和模型图形,以便于后续的可视化和分析。
文件开头引入了一些必要的模块和库,包括日志记录器、设置参数和颜色字符串等。接着,尝试导入torch.utils.tensorboard
中的SummaryWriter
,这是TensorBoard的核心组件,用于记录和保存训练过程中的数据。如果导入失败,或者在测试运行时,或者设置中未启用TensorBoard,则会捕获异常并将SummaryWriter
设置为None
。
在文件中定义了几个函数。_log_scalars
函数用于将标量值记录到TensorBoard中,接受一个字典类型的参数scalars
和一个步数参数step
。如果WRITER
实例存在,就会遍历字典中的每一项并将其添加到TensorBoard中。
_log_tensorboard_graph
函数用于将模型的计算图记录到TensorBoard。它首先获取输入图像的尺寸,然后创建一个全零的张量作为输入。接着,使用torch.jit.trace
对模型进行跟踪,并将生成的图形添加到TensorBoard中。如果过程中出现任何异常,则会记录警告信息。
on_pretrain_routine_start
函数在训练前初始化TensorBoard的记录功能,创建SummaryWriter
实例并输出相关信息,提示用户如何启动TensorBoard并查看日志。
on_train_start
函数在训练开始时调用,用于记录模型的计算图。
on_batch_end
函数在每个训练批次结束时调用,记录当前批次的损失值。
on_fit_epoch_end
函数在每个训练周期结束时调用,记录该周期的指标。
最后,文件定义了一个回调字典callbacks
,将上述函数与相应的事件关联起来,只有在SummaryWriter
存在的情况下才会创建这个字典。这样,在训练过程中可以根据不同的事件触发相应的记录操作,以便于在TensorBoard中查看训练进度和效果。
11.3 code\ultralytics\utils\errors.py
# 导入Ultralytics库中的emojis工具
from ultralytics.utils import emojis
class HUBModelError(Exception):
"""
自定义异常类,用于处理与Ultralytics YOLO模型获取相关的错误。
当请求的模型未找到或无法检索时,将引发此异常。
消息经过处理,以包含表情符号,以改善用户体验。
属性:
message (str): 当异常被引发时显示的错误消息。
注意:
消息会通过'ultralytics.utils'包中的'emojis'函数自动处理。
"""
def __init__(self, message="Model not found. Please check model URL and try again."):
"""当模型未找到时创建异常。"""
# 调用父类的构造函数,并将处理过的消息传递给它
super().__init__(emojis(message))
代码核心部分及注释说明:
- 导入emojis工具:用于将文本消息转换为包含表情符号的格式,增强用户体验。
- HUBModelError类:自定义异常类,继承自Python内置的Exception类,用于处理模型获取错误。
- 构造函数__init__:
- 接受一个可选的消息参数,默认值为“Model not found. Please check model URL and try again.”。
- 调用父类的构造函数,使用emojis函数处理消息,使其包含表情符号。
这个程序文件定义了一个自定义异常类 HUBModelError
,用于处理与 Ultralytics YOLO 模型获取相关的错误。该异常类主要用于在请求的模型未找到或无法检索时抛出异常,提供了更友好的用户体验。
在文件的开头,首先引入了 emojis
函数,这个函数来自 ultralytics.utils
包,主要用于处理消息中的表情符号。接着,定义了 HUBModelError
类,该类继承自 Python 的内置 Exception
类。
类的文档字符串详细说明了该异常的用途和属性。它指出,当请求的模型无法找到时,将会抛出这个异常,并且异常消息会经过 emojis
函数处理,以便在显示时包含表情符号,从而提升用户体验。
在 __init__
方法中,定义了一个默认的错误消息:“Model not found. Please check model URL and try again.”,表示模型未找到,建议用户检查模型的 URL 并重试。调用 super().__init__(emojis(message))
将处理后的消息传递给父类的构造函数,以确保异常能够正确地被抛出并显示。
总的来说,这个文件的主要功能是提供一个清晰、友好的方式来处理与模型获取相关的错误,帮助开发者更好地调试和用户更好地理解问题。
11.4 train.py
以下是经过简化和注释的核心代码部分:
import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class DetectionTrainer(BaseTrainer):
"""
基于检测模型的训练类,继承自BaseTrainer类。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 图像文件夹的路径。
mode (str): 模式,可以是'train'或'val',用于不同的数据增强。
batch (int, optional): 批次大小,仅用于'rect'模式。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) # 获取模型的最大步幅
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构建并返回数据加载器。"""
assert mode in ["train", "val"] # 确保模式有效
with torch_distributed_zero_first(rank): # 仅在DDP中初始化数据集
dataset = self.build_dataset(dataset_path, mode, batch_size) # 构建数据集
shuffle = mode == "train" # 训练模式下打乱数据
workers = self.args.workers if mode == "train" else self.args.workers * 2 # 设置工作线程数
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对图像批次进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择图像大小
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 进行插值
batch["img"] = imgs # 更新批次图像
return batch
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) # 创建检测模型
if weights:
model.load(weights) # 加载权重
return model
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""从CSV文件中绘制指标。"""
plot_results(file=self.csv, on_plot=self.on_plot) # 保存结果图
代码注释说明:
- 导入模块:导入必要的库和模块,包括数据处理、模型构建和工具函数。
- DetectionTrainer类:定义一个继承自
BaseTrainer
的类,用于训练YOLO检测模型。 - build_dataset方法:构建YOLO数据集,支持训练和验证模式,允许不同的数据增强。
- get_dataloader方法:构建数据加载器,支持分布式训练。
- preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和可选的多尺度调整。
- get_model方法:创建并返回YOLO检测模型,支持加载预训练权重。
- plot_training_samples方法:绘制训练样本及其对应的注释,便于可视化训练过程。
- plot_metrics方法:从CSV文件中绘制训练指标,便于监控训练效果。
这个程序文件 train.py
是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,基于 Ultralytics 的实现。程序主要包含一个名为 DetectionTrainer
的类,该类继承自 BaseTrainer
,专门用于处理目标检测任务。
在这个类中,首先定义了 build_dataset
方法,用于构建 YOLO 数据集。该方法接收图像路径、模式(训练或验证)和批次大小作为参数,使用 build_yolo_dataset
函数来生成数据集,并根据模型的步幅设置进行调整。
接着,get_dataloader
方法用于构建数据加载器。它会根据传入的模式(训练或验证)初始化数据集,并设置是否打乱数据的顺序。该方法还会根据训练模式的不同,调整工作线程的数量。
preprocess_batch
方法用于对每个批次的图像进行预处理,包括缩放和转换为浮点数格式。它还支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。
set_model_attributes
方法用于设置模型的属性,包括类别数量和类别名称。这些信息是从数据集中提取的,并被附加到模型中,以便于后续的训练和验证。
get_model
方法用于返回一个 YOLO 检测模型的实例。它可以根据配置文件和权重文件来加载模型。
get_validator
方法返回一个用于模型验证的 DetectionValidator
实例,负责计算和记录模型在验证集上的表现。
label_loss_items
方法用于返回一个包含训练损失项的字典,这在目标检测中是必要的,因为它需要跟踪多个损失项。
progress_string
方法返回一个格式化的字符串,显示训练进度,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。
plot_training_samples
方法用于绘制训练样本及其标注,生成的图像会保存到指定的目录中。
最后,plot_metrics
和 plot_training_labels
方法分别用于绘制训练过程中的指标和生成带有标注的训练图像。这些方法利用 plot_results
和 plot_labels
函数来实现可视化。
整体来看,这个程序文件实现了 YOLO 模型的训练流程,包括数据集构建、数据加载、图像预处理、模型设置、训练过程监控和结果可视化等功能。
11.5 code\train.py
以下是经过简化和注释的核心代码部分:
import os
import torch
import yaml
from ultralytics import YOLO # 导入YOLO模型库
from QtFusion.path import abs_path # 导入路径处理函数
# 设置设备为GPU(如果可用),否则使用CPU
device = "0" if torch.cuda.is_available() else "cpu"
if __name__ == '__main__': # 确保该模块被直接运行时才执行以下代码
# 定义工作进程数量和批次大小
workers = 1
batch = 2
# 定义数据集名称
data_name = "data"
# 获取数据集配置文件的绝对路径
data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')
# 获取数据集目录路径
directory_path = os.path.dirname(data_path)
# 读取YAML配置文件
with open(data_path, 'r') as file:
data = yaml.load(file, Loader=yaml.FullLoader)
# 如果YAML文件中包含'path'项,则修改为当前目录路径
if 'path' in data:
data['path'] = directory_path
# 将修改后的数据写回YAML文件
with open(data_path, 'w') as file:
yaml.safe_dump(data, file, sort_keys=False)
# 加载YOLOv8模型
model = YOLO(model='./ultralytics/cfg/models/v8/yolov8s.yaml', task='detect')
# 开始训练模型
results2 = model.train(
data=data_path, # 指定训练数据的配置文件路径
device=device, # 指定训练设备
workers=workers, # 指定工作进程数量
imgsz=640, # 输入图像大小
epochs=100, # 训练的轮数
batch=batch, # 每个批次的大小
name='train_v8_' + data_name # 训练任务名称
)
代码注释说明:
- 导入库:导入必要的库,包括操作系统相关的
os
、深度学习框架torch
、YAML文件处理库yaml
和YOLO模型库。 - 设备选择:根据是否有可用的GPU,选择训练设备为GPU或CPU。
- 主程序入口:使用
if __name__ == '__main__':
确保只有在直接运行该脚本时才执行后续代码。 - 参数设置:定义工作进程数量和批次大小,便于后续训练配置。
- 数据集路径处理:根据数据集名称构建数据集配置文件的绝对路径,并提取其目录路径。
- 读取和修改YAML文件:读取YAML配置文件,检查并更新其中的
path
项为当前目录路径,然后将修改后的内容写回文件。 - 模型加载:加载YOLOv8模型,准备进行目标检测任务。
- 模型训练:调用
train
方法开始训练,传入数据路径、设备、工作进程数量、图像大小、训练轮数、批次大小和任务名称等参数。
这个程序文件 train.py
主要用于训练一个YOLOv8目标检测模型。首先,它导入了必要的库,包括 os
、torch
、yaml
和 ultralytics
中的 YOLO 模型。程序会检查当前是否有可用的GPU,如果有,则使用GPU进行训练,否则使用CPU。
在 __main__
代码块中,程序设置了一些训练参数,包括工作进程数和批次大小。接着,程序定义了数据集的名称,并构建了数据集配置文件的绝对路径。这个路径是通过调用 abs_path
函数获取的,确保路径格式统一为Unix风格。
程序读取指定的YAML文件,保持原有的顺序,并检查是否存在 path
项。如果存在,程序会将其更新为数据集目录的路径,并将修改后的内容写回到YAML文件中。这一步是为了确保YOLO模型能够正确找到数据集。
随后,程序加载了预训练的YOLOv8模型,指定了模型的配置文件路径。接下来,程序调用 model.train
方法开始训练模型。在训练过程中,程序会使用之前设置的参数,包括数据配置文件路径、设备类型、工作进程数、输入图像大小、训练的epoch数量和批次大小。同时,训练任务的名称也会根据数据集名称进行命名。
总体来说,这个程序文件实现了YOLOv8模型的训练过程,涵盖了数据集路径的处理、模型的加载以及训练参数的设置。
11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\sam.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
from torch import nn
class Sam(nn.Module):
"""
Sam (Segment Anything Model) 是一个用于对象分割任务的模型。它使用图像编码器生成图像嵌入,并使用提示编码器对各种类型的输入提示进行编码。这些嵌入随后被掩码解码器用于预测对象掩码。
"""
def __init__(
self,
image_encoder: ImageEncoderViT, # 图像编码器,用于将图像编码为嵌入
prompt_encoder: PromptEncoder, # 提示编码器,用于编码输入提示
mask_decoder: MaskDecoder, # 掩码解码器,用于从图像嵌入和编码的提示中预测掩码
pixel_mean: List[float] = (123.675, 116.28, 103.53), # 图像归一化的均值
pixel_std: List[float] = (58.395, 57.12, 57.375) # 图像归一化的标准差
) -> None:
"""
初始化 Sam 类,用于从图像和输入提示中预测对象掩码。
参数:
image_encoder (ImageEncoderViT): 用于将图像编码为图像嵌入的主干网络。
prompt_encoder (PromptEncoder): 编码各种类型输入提示的编码器。
mask_decoder (MaskDecoder): 从图像嵌入和编码的提示中预测掩码的解码器。
pixel_mean (List[float], optional): 输入图像的像素归一化均值,默认为 (123.675, 116.28, 103.53)。
pixel_std (List[float], optional): 输入图像的像素归一化标准差,默认为 (58.395, 57.12, 57.375)。
"""
super().__init__() # 调用父类 nn.Module 的初始化方法
self.image_encoder = image_encoder # 保存图像编码器
self.prompt_encoder = prompt_encoder # 保存提示编码器
self.mask_decoder = mask_decoder # 保存掩码解码器
# 注册像素均值和标准差,用于图像归一化
self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)
代码说明:
- 导入必要的库:导入了
torch
和torch.nn
,用于构建深度学习模型。 - Sam 类:继承自
nn.Module
,用于实现对象分割模型。 - 初始化方法:
- 接收图像编码器、提示编码器和掩码解码器作为参数。
pixel_mean
和pixel_std
用于图像预处理,帮助模型更好地学习。- 使用
register_buffer
方法注册均值和标准差,使其成为模型的一部分,但不作为模型的参数进行优化。
这个程序文件是一个名为 sam.py
的 Python 文件,属于 Ultralytics YOLO 项目的一部分,主要用于实现一个名为 Sam(Segment Anything Model)的对象分割模型。该模型的设计目的是处理图像中的对象分割任务。
在文件开头,包含了一些版权和许可证信息,表明该代码遵循 AGPL-3.0 许可证,并且版权归 Meta Platforms, Inc. 及其附属公司所有。
接下来,文件导入了一些必要的库和模块,包括 torch
和 torch.nn
,以及一些自定义的编码器和解码器模块。这些模块分别用于图像编码、提示编码和掩码解码。
Sam
类是该文件的核心部分,继承自 nn.Module
,这是 PyTorch 中所有神经网络模块的基类。类的文档字符串详细描述了 Sam
的功能和属性。该模型通过图像编码器生成图像嵌入,并使用提示编码器对输入提示进行编码,最终通过掩码解码器预测对象的掩码。
在类的属性中,mask_threshold
用于设置掩码预测的阈值,image_format
指定输入图像的格式(默认为 RGB)。image_encoder
、prompt_encoder
和 mask_decoder
分别是用于图像嵌入、提示编码和掩码预测的模块。pixel_mean
和 pixel_std
则用于图像归一化处理的均值和标准差。
构造函数 __init__
初始化了 Sam
类的实例,接受图像编码器、提示编码器和掩码解码器作为参数,并允许用户自定义像素的均值和标准差,默认值已经在文档中给出。构造函数中调用了父类的初始化方法,并将传入的编码器和解码器赋值给相应的属性。此外,使用 register_buffer
方法注册了 pixel_mean
和 pixel_std
,这使得它们在模型的状态字典中可用,但不会被视为模型的可训练参数。
总的来说,这个文件实现了一个用于对象分割的模型框架,提供了必要的结构和初始化方法,以便后续进行图像处理和掩码预测。
12.系统整体结构(节选)
整体功能和构架概括
该项目是一个基于 YOLOv8 的目标检测和分割模型的实现,主要用于计算机视觉任务。它包含多个模块和文件,每个文件负责特定的功能,如模型训练、数据处理、错误处理、可视化等。整体架构围绕 YOLOv8 模型的训练和推理过程展开,提供了灵活的接口和工具,以便于用户进行模型的训练、评估和可视化。
文件功能整理表
文件路径 | 功能描述 |
---|---|
D:\tools\20240809\code\ui.py | 提供一个入口来运行 Streamlit Web 应用,用于展示和交互 YOLO 模型的功能。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\tensorboard.py | 集成 TensorBoard 以记录训练过程中的指标和可视化模型性能。 |
D:\tools\20240809\code\code\ultralytics\utils\errors.py | 定义自定义异常类 HUBModelError ,用于处理模型获取相关的错误。 |
D:\tools\20240809\code\train.py | 负责训练 YOLO 模型,设置训练参数,加载数据集和模型,并启动训练过程。 |
D:\tools\20240809\code\code\train.py | 另一个训练脚本,主要用于配置和启动 YOLOv8 模型的训练过程,处理数据集路径和模型加载。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\sam.py | 实现 Segment Anything Model (SAM),用于图像分割任务,包含模型的结构和初始化。 |
D:\tools\20240809\code\code\ultralytics\data\explorer\gui\__init__.py | 初始化数据探索工具的 GUI 模块,提供用户界面以浏览和分析数据集。 |
D:\tools\20240809\code\code\ultralytics\models\sam\amg.py | 实现与 SAM 相关的自适应多图像生成 (AMG) 功能,支持图像处理和分割。 |
D:\tools\20240809\code\code\ultralytics\models\utils\__init__.py | 初始化模型工具模块,提供与模型相关的辅助功能和工具。 |
D:\tools\20240809\code\code\ultralytics\engine\trainer.py | 定义训练引擎,负责模型的训练过程,包括前向传播、反向传播和优化步骤。 |
D:\tools\20240809\code\code\ultralytics\hub\session.py | 管理模型的会话,处理模型的加载、保存和推理请求。 |
D:\tools\20240809\code\code\ultralytics\nn\tasks.py | 定义与模型任务相关的功能,包括目标检测和分割任务的实现。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\classify\__init__.py | 初始化 YOLO 分类模型模块,提供分类相关的功能和接口。 |
这个表格概述了每个文件的主要功能,帮助理解整个项目的结构和各个模块之间的关系。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/qunshansj/Pipes629
参考原始博客2: https://github.com/VisionMillionDataStudio/Pipes629