算法学习之路9.回文数---字符串、数字

题目描述:

判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

示例 1:

输入: 121
输出: true
示例 2:

输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:

输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。
进阶:

你能不将整数转为字符串来解决这个问题吗?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/palindrome-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


解法:

这个应该算是比较简单的了。最容易想到的肯定是变成字符串,直接判断首尾。复杂的方法那当然是转成每一位数字去判断了。

解法1:

public class Solution {
    public bool IsPalindrome(int x) {
        string t=x.ToString();
        for(int i=0;i<t.Length/2;i++) if(t[i]!=t[t.Length-1-i]) return false;
        return true;
    }
}

执行用时 :84 ms, 在所有 C# 提交中击败了95.07%的用户

内存消耗 :15.5 MB, 在所有 C# 提交中击败了56.89%的用户


解法2:

附上官方的解法,比较费劲。

思路

映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。

第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较,如果它们是相同的,那么这个数字就是回文。
但是,如果反转后的数字大于int.MAX,我们将遇到整数溢出问题。

按照第二个想法,为了避免数字反转可能导致的溢出问题,为什么不考虑只反转 \text{int}int 数字的一半?毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。

例如,输入 1221,我们可以将数字 “1221” 的后半部分从 “21” 反转为 “12”,并将其与前半部分 “12” 进行比较,因为二者相同,我们得知数字 1221 是回文。

让我们看看如何将这个想法转化为一个算法。

算法

首先,我们应该处理一些临界情况。所有负数都不可能是回文,例如:-123 不是回文,因为 - 不等于 3。所以我们可以对所有负数返回 false。

现在,让我们来考虑如何反转后半部分的数字。
对于数字 1221,如果执行 1221 % 10,我们将得到最后一位数字 1,要得到倒数第二位数字,我们可以先通过除以 10 把最后一位数字从 1221 中移除,1221 / 10 = 122,再求出上一步结果除以 10 的余数,122 % 10 = 2,就可以得到倒数第二位数字。如果我们把最后一位数字乘以 10,再加上倒数第二位数字,1 * 10 + 2 = 12,就得到了我们想要的反转后的数字。如果继续这个过程,我们将得到更多位数的反转数字。

现在的问题是,我们如何知道反转数字的位数已经达到原始数字位数的一半?

我们将原始数字除以 10,然后给反转后的数字乘上 10,所以,当原始数字小于反转后的数字时,就意味着我们已经处理了一半位数的数字。

public class Solution {
    public bool IsPalindrome(int x) {
        // 特殊情况:
        // 如上所述,当 x < 0 时,x 不是回文数。
        // 同样地,如果数字的最后一位是 0,为了使该数字为回文,
        // 则其第一位数字也应该是 0
        // 只有 0 满足这一属性
        if(x < 0 || (x % 10 == 0 && x != 0)) {
            return false;
        }

        int revertedNumber = 0;
        while(x > revertedNumber) {
            revertedNumber = revertedNumber * 10 + x % 10;
            x /= 10;
        }

        // 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
        // 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
        // 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
        return x == revertedNumber || x == revertedNumber/10;
    }
}

复杂度分析

时间复杂度:O(log10 (n)),对于每次迭代,我们会将输入除以10,因此时间复杂度为 O(log10  (n))。
空间复杂度:O(1)。

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页