codeforces #315B. Symmetric and Transitive dp

描述:

给定一个集合A,集合中有 n 个元素,定义 p(a, b) 为集合中的二元关系,p是等价关系,当且仅当p满足自反,对称,传递。而 Johnny 觉得并不需要自反性,因为

if p(a,b), then p(b,a), thenp(a,b)
但是这个说法明显是错的,现在需要你在这个集合中举例子反驳 Johnny ,问你可以有多少种方式去反驳他。

思路:

要反驳Johnny,那么集合里面要存在元素s,s和集合中任何元素都没有p关系,包括其自己,也就是存在孤立的元素。
枚举出现的孤立的元素个数k,那么剩下n-k个元素就要被分成若干组,组内满足自反,对称和传递,而组与组之间没有关系。

dp[i][k]表示i个元素被分成k组的方案数

考虑第i个元素,第i个元素可以自己一组,或者和原先的组成一组。

dp[i][j]=dp[i1][j1]+dp[i1][j]j

于是我们要求的答案是枚举有k个元素是孤立的元素,而身下的元素可以分成若干组,即把所有的dp[i][j] 加起来乘以组合数。

ans=i=1n1j=1i(dp[i][j]C(n,i))

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 4000 + 5;

const long long MOD = 1L * 1E9 + 7;

int n;
long long dp[MAXN][MAXN];
long long C[MAXN][MAXN];

void init() {
    for (int i=0; i<MAXN; i++) {
        C[i][0] = C[i][i] = 1L;
    }

    for (int i=2; i<MAXN; i++) {
        for (int j=1; j<i; j++) {
            C[i][j] = (C[i-1][j-1] + C[i-1][j]) % MOD;
        }
    }
}

int main () {
    scanf ("%d", &n);
    init();
    for (int i=1; i<=n; i++) {
        dp[i][1] = dp[i][i] = 1L;
    }

    for (int i=2; i<=n; i++) {
        for (int j=2; j<i; j++) {
            dp[i][j] = (dp[i-1][j-1] + dp[i-1][j] * j) % MOD;
        }
    }

    long long ans = 1L;

    for (int i=1; i<=n-1; i++) {
        for (int j=1; j<=i; j++) {
            ans = (ans + (dp[i][j] * C[n][i]) % MOD) % MOD;
        }
    }

    cout << ans % MOD << endl;

    return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值