codeforces 566F. Clique in the Divisibility Graph dp

描述:

有n个点,点上有值a[i], 任意两点(i, j)有无向边相连当且仅当

(a[i]moda[j])==0||(a[j]moda[i])==0

问这幅图中的最大连通子图是多少。

思路

因为边是特殊要求的,所以一个连通子图的点是一成倍数关系的序列。

aam1am2am3amk

0a[i]106 ,所以他的因子是少于 103

dp[i] 表示最大的值为i的时候可以构成的最大连通子图

dp[i]=max(dp[j]);(i modj==0)

#include <bits/stdc++.h>
using namespace std;

int n;
int a[1000000+5];
int dp[1000000+5];

int main () {
    int n;
    scanf ("%d", &n);
    for (int i=1; i<=n; i++) {
        scanf ("%d", &a[i]);
        dp[a[i]] = 1;
    }
    int ans = 0;
    for (int i=1; i<=n; i++) {
        ans = max(ans, dp[a[i]]);
        int s = 2;
        while(a[i]*s <= a[n]) {
            dp[a[i]*s] = max(dp[a[i]*s], dp[a[i]] + 1);
            s++;
        }
    }

    printf("%d\n", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值