A - Mahjong
题意
麻将,现在手上有13张牌,问你还要抽到哪张牌就能胡牌。胡牌规则题目给出。
思路
模拟,枚举下张抽到的牌,判断是否胡牌。注意每种牌的数量不能超过4。鉴于上次做模拟题的教训,我让队友写去了。
B - Sum of divisors
题意
求一个数的因子在m进制下的各数位的平方和,答案用m进制表示
思路
sqrt(n)
求得n的因子,然后对因子按m进制数位分离,再求平方和。so,还是队友写的。
C - locker
题意
有一串长n的密码,初始为s,要求把他转成t,每位是0~9
,每次最多可以同时上调或下调最多三位。如:567890 -> 567901(上调后三位)。问最少要调整几次。
思路
要考虑连续的三位,则dp需要记录两位状态表示那两位的值是多少。
dp[i][j][k]:i位之前的已经搞定,第i位值为就,第i+1位为j。
现在需要把j变成t[i],可以上调若干位,或者下调若干位。已需要上调up位作讨论。那么第i+1个可以上调v位(v <= up),同时第i+2位可以上调c位(c <= v)。由此可已得到状态转移。dp[i+1][v][c] = min(dp[i][j][k] + up)
。
同时最后两位需要单独考虑。于是我因为没有想清楚最后两位是怎么处理所以一直wa,或者在s和t后面加两个’0’就不需要单独处理了。
code
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1000 + 5;
const int INF = 999999999;
int n;
char s[MAXN], t[MAXN];
int dp[1005][15][15];
int _get (char a, char b) {
if (a <= b) {
return b - a;
} else {
return b + 10 - a;
}
}
void init () {
for (int i=0; i<MAXN; i++) {
for (int j=0; j<10; j++) {
for (int k=0; k<10; k++) {
dp[i][j][k] = INF;
}
}
}
}
int main () {
for (; scanf ("%s %s", s, t) != EOF; ) {
n = strlen(s);
s[n] = '0'; s[n+1] = '0';
t[n] = '0'; t[n+1] = '0';
int ans = INF;
if (n == 1) {
int tmp = _get(s[0], t[0]);
ans = min(tmp, 10 - tmp);
cout << ans << endl;
} else {
init ();
dp[0][s[0] - '0'][s[1] - '0'] = 0;
for (int i=0; i<n-2; i++) {
for (int a=0; a<=9; a++) for (int b=0; b<=9; b++) {
if (dp[i][a][b] == INF) continue;
int up = _get('0' + a, t[i]);
int down = 10 - up;
int now = dp[i][a][b];
for (int j=0; j<=up; j++) for (int k=0; k<=j; k++) {
char tmp_a = '0' + (b + j) % 10;
char tmp_b = '0' + (s[i+2] - '0' + k) % 10;
if (now + up < dp[i+1][tmp_a-'0'][tmp_b-'0']) {
dp[i+1][tmp_a-'0'][tmp_b-'0'] = now + up;
}
}
for (int j=0; j<=down; j++) for (int k=0; k<=j; k++) {
char tmp_a = '0' + (b + 10 - j) % 10;
char tmp_b = '0' + (s[i+2] - '0' + 10 - k) % 10;
if (now + down < dp[i+1][tmp_a-'0'][tmp_b-'0']) {
dp[i+1][tmp_a-'0'][tmp_b-'0'] = now + down;
}
}
}
}
// cout << dp[n][0][0] << endl;
for (int a=0; a<=9; a++) for (int b=0; b<=9; b++) {
if (dp[n-2][a][b] == INF) continue;
int now = dp[n-2][a][b];
int up_a = _get(a + '0', t[n-2]);
int up_b = _get(b + '0', t[n-1]);
ans = min (ans, now + max(up_a, up_b));
int down_a = 10 - up_a;
int down_b = 10 - up_b;
ans = min (ans, now + max(down_a, down_b));
ans = min (ans, now + up_a + down_b);
ans = min (ans, now + up_b + down_a);
}
}
cout << ans << endl;
}
return 0;
}
H - Hunters
题意
俩猎人要切磋技艺,森林里住这老虎和狼。击杀他们得分分别为x y
。如果他们选择不同的目标,他们确定能击杀自己的目标。如果选择相同的目标则Alice击杀的概率为p
,Bob击杀的概率为1-p
,同时Alice知道Bob先去击杀老虎的概率为Q,为了尽可能的多得分,求Alice要选择的目标和得分的最大期望。
思路
仔细想一下然后推公式吧。队友上
code
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
double x,y,p,q;
scanf("%lf %lf %lf %lf",&x,&y,&p,&q);
double a,b;
a=(1-q)*x+q*p*(x+y);
b=q*y+(1-q)*p*(x+y);
if(a>b)
printf("tiger %.4lf\n",a);
else
printf("wolf %.4lf\n",b);
}
return 0;
}