Astar Round2B 1005 区间交 区间覆盖 线段树

解决在多个区间中找出特定数量的区间,使这些区间的交集之和最大。使用双指针思想配合线段树来高效判断区间是否满足条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

给出n个数和m个区间,要求在m个区间中找出k个区间,并让这k个区间的交集的和最大。

思路

我们可以知道,如果一个区间满足被k个区间覆盖,那么其子区间也一定被k个区间覆盖。那么我们可以用双指针的思想,如果[l, r]区间满足条件,那么l++, 否则 r++ 直到满足。即我们要知道如何快速的知道一个区间是否被k个区间覆盖。
对区间[l, r] 我们维护一个数组sg,我们对所有的左端点比l 小的区间的右端点的位置sg[*] + 1,然后统计r后面的sg[*] 的和便是[l, r]被覆盖的次数。因为sg是随前面的双指针动态更新的,所以用线段树维护。

code

#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

#define MAXN (100000 + 5)

int n, k, m;
int l, r;
long long a[MAXN], s[MAXN];
vector<int> v[MAXN];

struct sgtree {
    int m[MAXN << 2];

    void push_up(int lr) {
        m[lr] = m[lr<<1] + m[lr<<1|1];
    }

    void create(int l, int r, int lr) {
        if (l == r) {
            m[lr] = 0;
            return ;
        }
        int m = (l + r) / 2;
        create(l, m, lr<<1);
        create(m+1, r, lr<<1|1);
        push_up(lr);
    }

    void modif(int l, int r, int lr, int p) {
        if (l == r) {
            m[lr] ++;
            return ;
        }
        int m = (l + r) / 2;
        if (p <= m) modif(l, m, lr<<1, p);
        if (m <  p) modif(m+1, r, lr<<1|1, p);
        push_up(lr);
    }

    int query(int l, int r, int lr, int L, int R) {
        if (l >= L && r <= R) {
            return m[lr];
        }
        int m = (l + r) / 2;
        int res = 0;
        if (m >= L) res += query(l, m, lr<<1, L, R);
        if (m <  R) res += query(m+1, r, lr<<1|1, L, R);
        return res;
    }
}sg;

void init () {
    for (int i=0; i<MAXN; i++) {
        v[i].clear();
    }
}

bool check (int l, int r) {
    int rc = sg.query(1, n, 1, l ,r);
    if (rc >= k) return true;
    else return false;
}

int main () {
    while (scanf("%d%d%d", &n, &k, &m)!=EOF) {

        init();
        for(int i=1;i<=n; i++) {
            scanf("%I64d", &a[i]);
            s[i] = s[i-1] + a[i];
        }
        s[n+1] = s[n];

        for (int i=0; i<m; i++) {
            scanf("%d%d", &l, &r);
            v[l].push_back(r);
        }
        int k = 0;

        sg.create(1, n, 1);

        long long ans = 0;

        for (int i=1; i<=n; i++) {
            for (int j=0; j<v[i].size(); j++) {
                sg.modif(1, n, 1, v[i][j]);
            }
            for (; check(k+1, n+1) && k <= n; k++);
            if (check(k, n)) {
                ans = max(ans, s[k] - s[i-1]);
            }
        }

        printf("%I64d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值