概率论的学习和整理--番外12:2个概率方案,选择哪个好?如何比较

文章探讨了在游戏设计中,当3个A能合成1个B时,两种不同奖励策略的比较。第一种方案是1/4概率返还1个A,第二种是1/10概率额外获得1个B。通过计算期望和方差,得出结论:在期望相近的情况下,方案1因方差小而提供更稳定的体验,因此更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 要解决的题目

2 先说结论,后面解释原因

2.1 先考虑期望,期望要尽量大,但比然有限制

2.2  再考虑方差,在期望给定前提下,尽量减小方差,稳定体验

2.3 结论:先考虑期望,再考虑方差

3 算法

3.1 错误算法

3.2  正确算法1,直接解方程

3.3 正确算法2,用条件期望求解

3.4 算法3,用递归--等比数列求和来算

4  上述两个方案比较的意义-回到问题本身


1 要解决的题目

题目

3个A合成1个B

方案1:1/4 几率返还一个A,

方案2:1/10 几率多得1个B

哪一个更好呢?

2 先说结论,后面解释原因

2.1 先考虑期望,期望要尽量大,但比然有限制

  • 提供方利益和用户利益并不一致,需要双方达到一个平衡
  • 用户肯定更喜欢期望大的,期望大意味着可以获得更多
  • 但是提供方往往要严控期望值,也就是严控奖励发放数量

2.2  再考虑方差,在期望给定前提下,尽量减小方差,稳定体验

  • 再双方利益达到一个平衡点后,也就是期望稳定后,是否可以提高玩家的体验呢?
  • 答案是可以的
  • 那就是:尽量缩小方差,稳定玩家的体验,避免体验次数不同的玩家体验差异太大!

2.3 结论:先考虑期望,再考虑方差

  • 先在允许的范围内考虑期望尽量大
  • 期望差不多的时候,应该要考虑方差小的,也就是概率差不多的感受更好
  • 因为这2个方案期望差不多,但是方案1的概率大方差小,这2个方案里方案1更好

3 算法

先举1个错误例子

3.1 错误算法

下面这是错的!

这种简单思维,完全没有考虑到递归的影响,绿色还可以继续再来合成,需要折算

方案1

  • 3A=1/4*(3+1)+3/4*3     '这里这个1是可以继续再合成的,进行递归合成,无限次
  • 3A=4/4+9/4
  • 3A=13/4

方案2

  • 3A=9/10*3+1/10*6
  • 3A=27/10+6/10
  • 3A=33/10

比较

  • E(X1)-E(X2)=11/4-33/10=(110-132)/40= -22/40= -11/20

3.2  正确算法1,直接解方程

方案1

解方程,算二者关系

把A视为A, 把B视为B,每3个A可以合成一次B

  • 3A=3/4*B+1/4*(B+A)
  • 11/4*A=B
  • A=4/11*B

方案2

  • 3A=9/10*B+1/10*2B
  • 3A=11/10*B
  • A=11/30*B

比较

  • E(X1)-E(X2)=4/11-11/30= (120-121) /330 = -1/330

3.3 正确算法2,用条件期望求解

把A视为E(X), 把B视为1,每1个A只相当于1/3个B

  • 使用条件期望,先要考虑清楚,要考察的随机变量
  • 这里 令 X=是生成B的数量
  • 因为把合成公式用这个视角带入
  • 方案1: 3E(X)=3/4*1+1/4*(1+E(X))
  • 方案2: 3E(X)=9/10*1+1/10*2

  • 因为把合成公式用这个视角带入,但可以只看1个材料合成的情况,1/3即可
  • 其实,其实是用1个A,3个A,或者12个A都可以的,最后都可以约掉
  • 方案1: E(X)=3/4*1/3+1/4*(1/3+E(X)/3)
  • 方案2: E(X)=9/10*1/3+1/10*2/3

如果条件期望计算

方案1

  • E(X)=1/4*1/3(1+E(X))+3/4*1/3
  • E(X)=1/12*(1+E(X))+3/12
  • E(X)=4/11

方案2

  • E(X2)=9/10*1/3+1/10*2*(1/3)
  • E(X2)=3/10+2/30
  • E(X2)=11/30

比较

  • E(X1)-E(X2)=4/11-11/30= (120-121) /330 = -1/330

3.4 算法3,用递归--等比数列求和来算

用递归的方法算

考虑到递归的影响,绿色还可以继续再来合成,需要折算

考虑递归--用等比数列求和的方式算

方式1

  • 需要根据现在的合成关系,去展开
  • 然后去观察下,每次迭代之间的数值关系
  • 确实是符合等比数量
  • 找到公比,后来就好计算了
  • 12A =lim 4B+4B/12+4B/12/12+....
  • 12A =等比数列求和
  • 12A =lim 4B*(1-(1/12)^n)/(1-1/12)
  • 12A =4B*12/11
  • A =4/11*B

方式2

这个不用递归

因为没有涉及到合成后又生成A的问题

  • 3A=9/10*B+1/10*2B
  • 3A=11/10*B
  • A=11/30*B

比较

E(X1)-E(X2)=4/11-11/30= (120-121) /330 = -1/330

4  上述两个方案比较的意义-回到问题本身

题目

3个A合成1个B

方案1:1/4 几率返还一个A,

方案2:1/10 几率多得1个B

哪一个更好呢?

  • 可见其实计算了这2种方法
  • 发现,两者的期望差不多,
  • 但是方案1,25%概率,方差会小很多,感受更趋同
  • 方案2,10%概率生成2个B,方差就大很多,感受就不稳定
  • 所以,这2个方案里方案1更好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值