线性代数的学习和整理12: 矩阵与行列式的差别:定义和变换的差别

目录

1  行列式和矩阵的比较

2 简单总结矩阵与行列式的不同

3 加减乘除的不同

3.1 加法不同

3.2 减法不同

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

3.3.2 数乘的扩展

3.4 乘法

4 初等线性变换的不同

4.1 对矩阵进行线性变换

4.2 对行列式进行线性变换


1  行列式和矩阵的比较

  • 如果矩阵行数列数相等,那么这个矩阵是方阵,只有方阵才有行列式
  • 行列式必须是行列数相等。行列式是方阵的一种特殊运算,加减乘除规则都和矩阵不同

2 简单总结矩阵与行列式的不同

  • 区别1
  1. 矩阵是一个n*m的数表 矩阵是多个向量 ; 矩阵的行数和列数可以不同;
  2. 行列式是一个n阶的方阵样式的;
  • 区别2
  1. 矩阵不能从整体上被看成一个数, 矩阵是多个向量 ;
  2. 行列式最终可以算出来变成一个数/标量;
  • 区别3
  1. 加法不同
  2. 减法不同
  3. 数乘不同
  4. 乘法完全不同,不可比
  • 区别4
  1. 线性变化的交换,行列式不同
  2. 线性变化的倍数,行列式不同
  3. 线性变化的倍加,行列式不变,是相同的

3 加减乘除的不同

3.1 加法不同

  • 矩阵加法,两个矩阵都是n*m,A+B = 对应元素相加
  • 行列式加法,见下图,只是某1行/列相加

\begin{bmatrix} a11 &a12 \\ a21 & a22 \end{bmatrix} + \begin{bmatrix} c11 & a12 \\ c21 & a22 \end{bmatrix} = \begin{bmatrix} a11+c11 &a12+a12 \\ a21+c21 & a22+a22 \end{bmatrix}

\begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} + \begin{vmatrix} c11 & a12\\ c21 & a22 \end{vmatrix} = \begin{vmatrix} a11+c11 & a12\\ a21+c21 & a22 \end{vmatrix}

3.2 减法不同

  • 减法的差别,参考加法

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

  • 矩阵的标量乘法  λ*A=λ*每个元素,*A*B=A*λ*B
  • 行列式的标量乘法,λ*|A|=λ*某1行/列

b*\begin{bmatrix} a11 & a12\\ a21 & a22 \end{bmatrix} = \begin{bmatrix} b*a11 & b*a12\\ b*a21 & b*a22 \end{bmatrix}

b* \begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} = \begin{vmatrix} b*a11 & a12\\ b*a21 & a22 \end{vmatrix} = \begin{vmatrix} b*a11 & b*a12\\ a21 & a22 \end{vmatrix}

3.3.2 数乘的扩展

矩阵的数乘

  • 矩阵的标量乘法始终如此  (λ*A)=λ*(A)

行列式得数乘扩展

  • 行列式的标量乘法,|λ*A|=λ^n*|A| ,其中n是满秩矩阵A的秩/维度
  • 行列数乘法:  |Ann*Bnn| =|Ann|*|Bnn|
  • 行列数乘法:  |2Ann*Bnn| =|2Ann|*|Bnn| =2^n*|Ann|*|Bnn|
  1. 里面是矩阵的数乘,矩阵(假设是方阵)的数乘是每行每列都*λ
  2. 而行列式的数乘是  某1行/列*λ
  3. 因此每行的λ 都可以提出来,因此是n 个λ 相乘=λ^n

3.4 乘法

  • 矩阵乘法
  1. 矩阵乘法:点乘
  2. 矩阵乘法:叉乘
  • 行列式应该只有标量乘法,没有其他乘法吧?

4 初等线性变换的不同

线性变换包含,行的线性变换和列的线性变换

行的线性变换

  1. 行之间,交换
  2. 某行乘以倍数
  3. 某行乘倍数+到其他行

列的线性变换

  1. 列之间,交换
  2. 某列乘以倍数
  3. 某列乘倍数+到其他列

4.1 对矩阵进行线性变换

  • 无论是线性行变换,还是线性列变换,矩阵还是等价得
  1. 交换某行/列
  2. 倍数
  3. 倍加
  • 矩阵进行线性变换后的结果

  1. 线性变换前后系统的特征值不变;
  2. 线性变换前后系统的传递函数矩阵不变;

4.2 对行列式进行线性变换

  • 交换:如果交换行列式|A| 的任意两行/列,增加一个负号-
  • 倍数:如果行列式|A| 某1行或列*λ,|A| 变成 λ*|A|
  • (如果行列式(对应方阵)每行每列都*λ,那么 A| 变成 λ^n*|A|)
  • 倍加:如果行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|
  • 总结,只有进行倍加的线性变换之后,行列式才不变化

解释原因

  • 因为行列式其实代表有向的面积比,所以交换行列式|A| 的任意两行/列,增加一个负号-
  • 因为行列式的标量乘法 λ*|A|= 把行列式的某1行/列* λ,所以行列式|A| 某1行或列*λ,|A| 变成 λ*|A|

  • 因为行列式其实代表有向的面积比,所以行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|

  • 9
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性代数第二版》是一本经典的线性代数教材。尽管它涵盖了众多线性代数的重要概念和理论,但是行列式是其中的一个关键内容。下面我将使用简洁的思维导图介绍一下《线性代数第二版》中关于行列式的知识点。 首先,在思维导图的中心,我们可以写下“行列式”这个概念。行列式是一个矩阵的重要性质,可以用一个标量来表示。行列式的计算可以按照一定的规则进行,其中最常见且重要的有三个:余子式、代数余子式和按行展开。 接下来,在思维导图的左侧,我们可以列出行列式定义及其性质。行列式定义是一个递归的过程,首先是1阶行列式为其唯一元素本身,然后是2阶行列式等于两个元素的交叉相减,以此类推。行列式的性质包括对换行性质、按列展开性质、按行展开性质等。这些性质能够帮助我们简化行列式的计算。 在思维导图的右侧,我们可以写下如何计算行列式的方法。最常用的方法是利用高斯消元法将行列式转化为上三角形矩阵,然后再进行求解。另外,我们也可以利用行列式的性质,如按行展开性质,来计算行列式的值。 最后,在思维导图的底部,我们可以列出行列式的应用领域。行列式不仅仅在线性代数中有重要的应用,还广泛应用于其他数学和工程领域。例如,在计算机图形学中,我们可以利用行列式来求解几何变换中的坐标变换等问题。 通过这个思维导图,我们可以清晰地了解到《线性代数第二版》中关于行列式的概念、性质、计算方法以及应用领域。希望这个简洁的导图能够帮助更多的人更好地理解行列式这一重要主题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值