第一次开始在Git hub上面下载源码,虽然还没使用,不过今天还是有收获的
感觉开始有写小论文的方向了,我应该着力于计算机视觉方面
开发一款检测工人是否安全佩戴防护措施的人工智能
首先接触了一个新鲜词汇:树莓派、yolov5、NVIDIA Jetson、GNU nano
树莓派:
Raspberry Pi(中文名为“树莓派”,简写为RPi),(或者RasPi / RPI) 是为学习计算机编程教育而设计,只有信用卡大小的微型电脑,其系统基于Linux。 随着Windows 10 IoT的发布,我们也将可以用上运行Windows的树莓派。
自问世以来,受众多计算机发烧友和创客的追捧,曾经一“派”难求。别看其外表“娇小”,内“芯”却很强大,视频、音频等功能通通皆有,可谓是“麻雀虽小,五脏俱全”。
如何将这一套视觉神y经网络推向成熟,为更多的工人规范上工
yolov5:
YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
NVIDIA Jetson:
NVIDIA® Jetson™ 系统所提供的性能和能效可提高自主机器软件的运行速度。
每个系统都是一个完备的模块化系统 (SOM),具备 CPU、GPU、PMIC、DRAM 和闪存。
Jetson 具备可扩展性,选择应用场合的 SOM,即能够以此为基础构建自定义系统,满足应用需求。
Jetson 模块可以支持需要各种性能级别和价格的大量应用场合,例如 AI 网络视频录像机 (NVR)、高精度制造领域中的自动光学检查 (AOI) 以及自主移动机器人 (AMR)。
GNU nano:
是一个小巧友好的文本编辑器. 与基本的文本编辑相比,nano提供许多额外的特性,例如:交互式的查找和替换,定位到指定的行列,自动缩进,特性切换,国际化支持,以及文件名标记完成.
nano的目标是类似Pico的全功能但又易于使用的编辑器。nano是遵守GNU通用公共许可证的自由软件,自从2.0.7版发布,许可证从GPLv2升级到GPLv3