1091 N-自守数
如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92
2
=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK
2
的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<vector>
#include<stack>
#include<algorithm>
#include<string>
#include<string.h>
#include<stdlib.h>
#include<set>
#include<ctype.h>
using namespace std;
long long ans,a[10],b[10],n,m;
bool show(int ans,int m)
{
int h=0,l=0;
while(ans){
a[h]=ans%10;
ans/=10;
h++;
}
while(m){
b[l]=m%10;
m/=10;
l++;
}
for(int u=0;u<l;u++){
if(a[u]!=b[u]){
return false;
}
}
return true;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++){
bool flag=true;
scanf("%d",&m);
for(int j=1;j<10;j++){
ans=j*pow(m,2);
if(show(ans,m)==true){
cout<<j<<" "<<ans<<endl;
flag=false;
break;
}
}
if(flag)
cout<<"No\n";
}
return 0;
}