SVM再次总结 - 3 - 线性支持向量机

         本总结是是个人为防止遗忘而作,不得转载和商用。


      说明:此篇是作者对“SVM”的第二次总结,因此可以算作对上次总结的查漏补缺以及更进一步的理解,所以很多在第一次总结中已经整理过的内容在本篇中将不再重复,如果你看的有些吃力,那建议你看下我的第一次总结:

      http://blog.csdn.net/xueyingxue001/article/details/51261397

 

百分百正确一定是最好的吗

      先看一个情况,如下图所示

     

      图中的实线百分百正确分类了两种数据,但是这样一定是最好的吗?

      你看,至少对这个样本集合,如果我舍弃了最左上角的那个点而有了虚线所示的分隔超平面的话,那这个模型的泛化能力更强。

      所以,百分百正确不一定最好,而且很多情况下你也做不到百分百正确,比如:你能让所有人都喜欢你吗?不能,而且你追求所有人都喜欢你的话反而会失去本来喜欢你的人的喜欢。

线性支持向量机面临的情况

      在上面的基础上,线性支持向量机面临的情况如下:

           1,不一定分类完全正确的超平面就是最好的;

           2,样本数据本身线性不可分,只好允许错误。

线性支持向量机的目标函数

      还记得线性可分支持向量机的约束条件吗?即:

           yi·(wT·φ(xi)+b) ≥ 1

      而因为线性支持向量机允许错误,即:某个点到分隔超平面的距离不大于1(甚至允许分错),即:

           yi·(wT·φ(xi)+b) ≥ 1 - ξi,  ξi ≥ 0

      这里ξi被称为松弛因子

      相对于线性可分支持向量机的目标函数:

          

      线性支持向量机的目标函数就成为了:

          

      这里C是个超参,用于调节松弛因子和原始目标函数之间的比例关系

      PS:如果C=∞时,哪怕ξ十分十分小,上面式子的第二项也会很大,那第二项就起决定性作用了,即:虽然有一点点小“松弛”,原函数也受不了,这样一来为了让前面的原始目标函数不失效,就必须要求ξ=0,这样一来这就是线性可分支持向量机了(不允许任何一点点松弛),所以第二项也是个正则项。

      求解方面和线性可分支持向量机那一套一样,这里就直接放截图了(图片来自邹博老师)

     

     

     

      然后和线性可分支持向量机中求α的方法一样求得α后回代到下面的式子:

          

      最后得到分隔超平面:

           w*x+ b* = 0

      和分类决策函数:

           f(x)= sign(w*x + b*)

损失函数分析

      这个在我的第一篇总结中已经说明了,所以此处只贴结论(图片来自邹博老师)。

     

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值