DeepSeek问答接口:基于DeepSeek自动联网搜索的轻量级 AI 问答接口技术分享

基于DeepSeek自动联网搜索的轻量级 AI 问答接口技术分享

本文详细介绍了一款基于 GET 请求的轻量级 AI 问答接口。通过自动联网搜索和流式返回机制,该接口能够以极低的成本为开发者提供实时、高效的智能问答服务。本文从接口概述、技术架构、优势与不足、应用场景及未来展望等多个角度进行了深入探讨,旨在为技术爱好者和开发者提供参考和启发。


关键词

  • DeepSeek R1
  • AI 问答
  • 自动联网搜索
  • 流式返回
  • 低成本
  • 接口集成
  • 技术分享

接口概述

该接口服务采用 HTTP GET 请求形式,专为智能问答场景设计。主要功能是接受用户提出的问题,并利用 AI 模型结合联网搜索的方式生成回答。接口返回的数据采用流式返回格式,使得用户能够实时获取答案的逐步输出。

  • 接口地址
    [GET] https://www.xujian.tech/atlapi/data/c/ask/ai/{code}?question=CSDN如何?
  • 参数说明
    • question:用户提出的问题内容,支持中文问题;
    • code:用户需通过微信小程序“数字续坚”首页签到获取的密钥参数,用以验证权限。

技术架构与工作原理

1. 自动联网搜索

  • 实时数据获取:接口内部集成了联网搜索机制,能够在回答过程中动态抓取互联网上的最新信息。这确保了回答内容的时效性和准确性。
  • 多渠道数据融合:在联网搜索的基础上,接口会对搜索结果进行整合和筛选,提取关键信息后与 AI 模型生成的文本进行融合,以构造出完整、详尽的回答。

2. 流式返回机制

  • 分段数据输出:接口采用流式返回技术,每次返回的数据格式为 data:xxx。其中,当 JSON 对象中的 type 字段为 “append-text” 时,表示当前返回的是正文的一部分。
  • 完成标识:当接口返回 data:[DONE] 时,表示整个回答内容已经传输完毕。此设计有助于用户端及时处理和展示答案,提高响应效率。

3. 成本优势

  • 低廉定价:每次请求仅需花费 2 分钱,极大地降低了大规模应用场景下的使用成本,适合各类初创项目和小型产品原型验证。
  • 自动联网搜索: 接口自动完成联网搜索,解决本地部署不能联网、联网搜索成本高、联网搜索慢等问题
  • 充值方便: 联系作者微信xujian_cq转账即可充值

接口参数及返回格式解析

请求参数

  • URL 参数
    GET https://www.xujian.tech/atlapi/data/c/ask/ai/{code}?question=<用户问题>&sessionId=XXX
    
    • 替换 {code} 为用户通过微信小程序获取的密钥,请妥善保管。
    • question 参数应进行 URL 编码后传递。
    • sessionId 在新建会话时不需要传入,在“继续追问”时作为参数传入,其来源见“示例返回格式第一段内容”

返回数据

  • 流式返回格式
    • 返回数据以 data:xxx 格式传输,其中 xxx 为一个 JSON 对象。
    • JSON 对象内的关键字段:
      • type:标识返回内容类型。若值为 “append-text”,说明该段数据为回答正文的一部分。
      • 当接收到 data:[DONE] 时,标志整个回答流程结束。

示例返回格式:

// type 为session-created只有新建会话(未传入sessionId)时才有,当后面的会话需要“继续追问”时,下方sessionId需要作为sessionId参数传入
data:{"data":{"createTime":1740566751915,"engineType":"","label":"all","model":"ds-r1","question":"谢谢你","resultCount":0,"updateTime":1740566751915,"sessionId":"61505b2bdc62a7bf9d20f563a656d87d"},"type":"session-created"}

data:{"type":"append-text","content":"这里是第一部分回答内容..."}
data:{"type":"append-text","content":"这里是后续回答内容..."}
data:[DONE]

请求示意图

在这里插入图片描述


应用场景与案例

1. 智能问答系统

  • 在线客服机器人:集成该接口可为企业网站或 App 提供智能问答服务,实现自动回复常见问题。
  • 知识库搜索:利用实时联网搜索功能,帮助用户快速定位所需信息,构建智能知识库。

2. 轻量级服务集成

  • 原型开发与验证:对于初期产品原型开发,开发者可以利用该接口快速验证 AI 问答的效果,节省研发成本和时间。
  • 嵌入式应用场景:适用于嵌入到小程序、微信生态系统或其他低资源设备中,满足实时信息检索需求。

3. 教育与培训

  • 在线教育平台:在教育场景下,接口可用于回答学术问题或技术咨询,辅助在线教学和自主学习。
  • 技术博客与文章生成:借助 AI 自动联网搜索功能,为技术分享类博客和文章提供丰富的数据支持和实时内容更新。

不足与改进方向

当前不足

  • 多轮对话支持不足(问题已得到解决):目前接口尚未实现连续对话上下文的管理,用户在需要多轮交互时可能无法获得连续一致的回答。
  • 功能持续性:部分高级功能(如深度语义理解、个性化定制等)还处于开发阶段,未来版本中有望进一步完善。

未来改进方向

  • 多轮对话能力(问题已得到解决):计划在后续版本中增加对话历史的存储和管理,使得接口能够支持更为复杂的交互场景。
  • 扩展功能与定制化:针对不同应用场景,提供定制化的回答策略和扩展 API 接口,满足不同行业的需求。
  • 性能与安全性优化:持续优化联网搜索速度和结果准确率,同时加强数据安全和接口访问控制,确保服务的高可用性。

总结与展望

该轻量级 AI 问答接口凭借其低成本、自动联网搜索和流式返回的设计,为开发者提供了一种高效且经济的智能问答解决方案。虽然当前存在多轮对话支持不足等局限,但随着后续功能的不断完善,未来有望在在线客服、知识库检索、在线教育等多个领域发挥更大作用。

通过不断探索与技术改进,开发者可以期待该接口在提升用户体验和降低开发成本方面带来更多惊喜,为智能问答技术的普及和应用拓展提供有力支持。


希望本文的分享能为您在实际应用中提供参考和帮助,欢迎在评论区交流更多技术细节与实践经验。

### DeepSeek 强化学习使用指南 #### 3.1 GRPO 算法简介 DeepSeek R1-Zero采用的核心算法是广义相对策略优化(GRPO),这是一种专门针对复杂环境下的强化学习方法。GRPO不仅能够处理大规模数据集,还能有效提升模型的学习效率和稳定性[^1]。 ```python import gymnasium as gym from deepseek import Agent, Environment env = gym.make('CartPole-v1') agent = Agent(env.observation_space.shape[0], env.action_space.n) def train_grpo(agent, environment, episodes=1000): for episode in range(episodes): state, _ = environment.reset() done = False while not done: action = agent.choose_action(state) next_state, reward, terminated, truncated, info = environment.step(action) done = terminated or truncated # 更新状态并记录奖励 agent.learn(state, action, reward, next_state, done) state = next_state train_grpo(agent, env) ``` 此代码片段展示了如何利用`deepseek`库中的Agent类实现基于GRPO的训练流程。通过定义一个简单的循环结构,在每次迭代过程中调用`choose_action()`函数选择动作,并根据反馈调整参数以改进性能[^3]。 #### 3.2 结合监督学习的方法 除了纯粹依赖于试错机制外,DeepSeek还支持混合模式——即先由专家提供部分标注样本指导初期阶段;之后再逐步过渡至完全自主探索的状态。这种方式有助于加速收敛速度的同时保持较高的泛化能力。 对于想要尝试这种组合方式的研究人员来说,可以考虑如下做法: - 准备一组高质量的人工标记数据; - 将这些样例输入给系统作为初始权重初始化的基础; - 随着时间推移逐渐减少外部干预直至消失不见。 这种方法特别适合那些难以获得足够数量真实世界交互经验的应用场景,比如自动驾驶汽车测试或是医疗诊断辅助工具的研发等。 #### 3.3 大型语言模型应用实例 当涉及到自然语言处理领域内的任务时,则可借助像DeepSeekMoE这样的预训练架构来进行迁移学习。具体而言就是把已经过充分锻炼过的Transformer组件迁移到新的目标上继续微调,从而达到事半功倍的效果[^2]。 例如,在构建聊天机器人项目期间,开发者可以从头开始创建对话管理模块之前,先加载经过广泛语料库熏陶后的基础版本,然后再针对性地对其进行个性化定制即可满足特定业务需求而不必重蹈覆辙重复劳动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

成旭先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值