广告算法常用指标

1、广告点击率=广告点击数/广告真实曝光数 CTR=adclk/real_adimp

2、 广告单价=点击费用/广告点击数(按照点击收费) ECPC=click_cost/adclk

3、千次请求成本=点击费用/曝光请求数 cpkr=click_cost/pvreq*1000

4、广告填充率=广告填充数/曝光请求数 pvr=pvfill/pvreq

5、展示次数/广告填充数 pvIR=pvimp/pvfill

6、广告真实曝光数/展示次数 AIN=real_adimp/pvimp

7、每一千次展示可以获得的广告收入= 收入/网页展示次数×1000=广告单价×网页点击率×1000  ecpm=ecpc*ctr*1000

每千次展示费用,CPM是什么意思?CPM,CPC和CPA之间的差异

  CPM是C ost P er M ille 的首字母缩写,一个数字营销术语,意味着每千次展示费用 ,“M”代表罗马数字1000,因此,CPM意味着“每千人成本”。

  CPM衡量每千次展示在线广告的成本,展示是指广告在网页上展示的时间。CPM通常用于投标系统,这些系统使用每千次展示费用来指示广告每千人曝光的费用。例如,如果每千次展示费用的价格设置为30元,则广告客户需要为其广告的每千次展示支付30元。

  点击率如何与每千人成本相关?

  CPM通常通过点击率(CTR)来衡量。点击率是指广告获得的总点击次数所获得的点击次数。如果广告每千次展示获得30次点击,则点击率为3%。在衡量每千次展示费用广告系列是否成功时,您必须使用比单独的点击率更多的测量值。仅仅因为没有点击广告,并不意味着它对观众没有影响。

  CPM,CPC和CPA之间的差异<

### 信息流广告算法实现机制 信息流广告通过特定的算法来决定哪些广告展示给用户以及如何排序这些广告。通常情况下,平台会收集大量的数据用于训练机器学习模型,从而预测用户的兴趣并优化点击率(CTR)[^1]。 #### 数据准备阶段 为了构建有效的推荐系统,在此期间需获取多维度的数据集,包括但不限于用户行为日志、人口统计学特征、上下文环境等。这一步骤对于后续建立精准投放策略至关重要[^2]。 #### 特征工程处理 基于上述原始资料提取有意义的信息作为输入变量供模型使用;例如历史浏览记录可以转化为类别型或数值型属性表示偏好程度。此外还需考虑实时因素的影响,像当前时间戳可能暗示着不同场景下的需求变化趋势[^3]。 #### 模型选择与评估指标设定 常用的分类器有逻辑回归(Logistic Regression),支持向量机(SVM),随机森林(Random Forests)等。而评价标准则围绕AUC-ROC曲线面积(Area Under Curve of Receiver Operating Characteristic),精确度(Precision),召回率(Recall)等方面展开讨论[^4]。 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pandas as pd # 假设df是一个包含了所有必要字段(如年龄, 性别, 浏览次数...)的数据框 X_train, X_test, y_train, y_test = train_test_split(df.drop('label', axis=1), df['label'], test_size=0.2) model = LogisticRegression() model.fit(X_train, y_train) predictions = model.predict_proba(X_test)[:, 1] ``` #### 推荐结果呈现方式 最终输出形式往往取决于具体应用场景的要求——既可以是简单的列表排列也可以采用更复杂的可视化界面设计让用户更容易理解和接受个性化建议[^5]。 最佳实践中强调持续迭代更新现有框架以适应不断演化的市场需求和技术进步方向。定期重新校准参数设置确保长期稳定性和高效性能表现[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值